1
GATE ECE 2014 Set 2
Numerical
+2
-0
The value of the integral $$\int\limits_{ - \infty }^\infty {\sin \,{c^2}}$$ (5t) dt is
2
GATE ECE 2014 Set 1
+2
-0.6
For a function g(t), it is given that $$\int_{ - \infty }^\infty {g(t){e^{ - j\omega t}}dt = \omega {e^{ - 2{\omega ^2}}}}$$ for any real value $$\omega$$. If y(t)=$$\int_{ - \infty }^t {g(\tau )d\tau ,\,then\,\int_{ - \infty }^\infty {y(t)\,dt} \,}$$ is
A
0
B
- j
C
$$- {j \over 2}$$
D
$${j \over 2}$$
3
GATE ECE 2012
+2
-0.6
The Fourier transform of a signal h(t) is $$H(j\omega )$$ =(2 cos $$\omega$$) (sin 2$$\omega$$) / $$\omega$$. The value of h(0) is
A
1/4
B
1/2
C
1
D
2
4
GATE ECE 2008
+2
-0.6
The signal x(t) is described by $$x\left( t \right) = \left\{ {\matrix{ {1\,\,\,for\,\, - 1 \le t \le + 1} \cr {0\,\,\,\,\,\,\,\,\,\,\,\,\,\,otherwise} \cr } } \right.$$

Two of the angular frequencies at which its Fourier transform becomes zero are

A
$$\pi ,\,2\pi$$
B
$$0.5\,\pi ,\,1.5\,\pi$$
C
$$0,\,\pi$$
D
$$2\,\pi ,\,2.5\,\pi$$
EXAM MAP
Medical
NEET