1
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
The phase response of a passband waveform at receiver is given by $$\varphi \,(f) = - 2\,\pi \,\alpha \,(f - {f_c}) - \,2\pi \beta \,{f_c}$$

where $${f_c}$$ is the centre frequency, and $$\alpha $$ and $$\beta $$ are positive constants. The actual signal propagation delay from the trasmitter to receiver is

A
$${{\alpha - \beta } \over {\alpha + \beta }}\,\,\,$$
B
$${{\alpha \,\beta } \over {\alpha + \beta }}$$
C
$$\alpha $$
D
$$\beta $$
2
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
For a periodic signal v(t) = 30 sin 100t + 10cos 300t + 6sin $${\rm{(500t + }}\,\pi /4)$$, the fundamental frequency in rad/s is
A
100
B
300
C
500
D
1500
3
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
Consider an angle modutated signal $$x(t) = 6\,\,\cos \,[2\,\pi \, \times {10^6}t + 2\sin (8000\pi t)\,4\cos (8000\pi t)]$$ V.

The average power of x(t) is

A
10 W
B
18 W
C
20 W
D
28 W
4
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
The Dirac delta function $$\delta (t)$$ is defined as
A
$$\delta (t) = \left\{ {\matrix{ {1,} & {t = 0} \cr {0,} & {otherwise} \cr } } \right.$$
B
$$\delta (t) = \left\{ {\matrix{ {\infty ,} & {t = 0} \cr {0,} & {otherwise} \cr } } \right.$$
C
$$\delta (t) = \left\{ {\matrix{ {1,} & {t = 0} \cr {0,} & {otherwise\,\,\,and\,\,\int\limits_{ - \infty }^\infty {\delta (t)\,dt = 1} } \cr } } \right.\,\,$$
D
$$\delta (t) = \left\{ {\matrix{ {\infty ,} & {t = 0} \cr {0,} & {otherwise\,\,\,and\,\,\int\limits_{ - \infty }^\infty {\delta (t)\,dt = 1} } \cr } } \right.\,\,$$
GATE ECE Subjects
EXAM MAP