1
GATE ECE 2010
+1
-0.3
Consider an angle modutated signal $$x(t) = 6\,\,\cos \,[2\,\pi \, \times {10^6}t + 2\sin (8000\pi t)\,4\cos (8000\pi t)]$$ V.

The average power of x(t) is

A
10 W
B
18 W
C
20 W
D
28 W
2
GATE ECE 2006
+1
-0.3
A solution for the differential equation $$\mathop x\limits^.$$(t) + 2 x (t) = $$\delta (t)$$ with intial condition $$x({0^ - }) = 0$$ is
A
$${e^{ - 2t}}\,u(t)$$
B
$${e^{2t}}\,u(t)$$
C
$${e^{ - t}}\,u(t)$$
D
$${e^t}\,u(t)$$
3
GATE ECE 2006
+1
-0.3
The Dirac delta function $$\delta (t)$$ is defined as
A
$$\delta (t) = \left\{ {\matrix{ {1,} & {t = 0} \cr {0,} & {otherwise} \cr } } \right.$$
B
$$\delta (t) = \left\{ {\matrix{ {\infty ,} & {t = 0} \cr {0,} & {otherwise} \cr } } \right.$$
C
$$\delta (t) = \left\{ {\matrix{ {1,} & {t = 0} \cr {0,} & {otherwise\,\,\,and\,\,\int\limits_{ - \infty }^\infty {\delta (t)\,dt = 1} } \cr } } \right.\,\,$$
D
$$\delta (t) = \left\{ {\matrix{ {\infty ,} & {t = 0} \cr {0,} & {otherwise\,\,\,and\,\,\int\limits_{ - \infty }^\infty {\delta (t)\,dt = 1} } \cr } } \right.\,\,$$
4
GATE ECE 2005
+1
-0.3
The function x(t) is shown in Fig. Even and odd parts of a unit-step function u(t) are respectively.
A
$${1 \over 2},\,{1 \over 2}x(t)$$
B
$$-{1 \over 2},\,{1 \over 2}x(t)$$
C
$${1 \over 2},\,-{1 \over 2}x(t)$$
D
$$-{1 \over 2},\,-{1 \over 2}x(t)$$
EXAM MAP
Medical
NEET