1
GATE ECE 2012
+2
-0.6
The magnetic field along the propagation direction inside a rectangular waveguide with the cross section shown in the figure is $${H_Z} = 3\,\,\cos \,\,(2.094\,\, \times \,\,{10^2}x)\,\,\,\cos \,(2.618\,\, \times \,\,{10^2}y)$$
$$\cos \,\,(6.283\,\, \times \,\,{10^{10}}t\, - \beta \,z)$$
The phase velocity $${V_p}$$ of the wave inside the waveguide satisfies
A
$${V_p}$$ > c
B
$${V_p}$$ = c
C
0 < $${V_p}$$ < c
D
$${V_p}$$ = 0
2
GATE ECE 2008
+2
-0.6
A rectangular waveguide of internal dimensions (a = 4 cm and b = 3 cm ) is to be operated in $$T{E_{11}}$$ mode. The minimum operating frequency is
A
6.25 GHz
B
6.0 GHz
C
5.0 GHz
D
3.75 GHz
3
GATE ECE 2007
+2
-0.6
An air-filled rectangular waveguide has inner dimensions of $$3\,cm\,\, \times \,\,2\,\,cm\,$$. The wave impedance of the $$T{E_{20}}$$ mode of propagation in the waveguide at a frequency of 30 GHz is (free space impedance $$\,{\eta _0} = \,377\,\,\Omega$$)
A
308 $$\Omega$$
B
355 $$\Omega$$
C
400 $$\Omega$$
D
461 $$\Omega$$
4
GATE ECE 2007
+2
-0.6
The $$\mathop E\limits^ \to$$ field in a rectangular waveguide of inner dimensions $$a\,\, \times \,\,b$$ is given by $$\mathop E\limits^ \to = {{\omega \,\mu } \over {{h^2}}}\,\left( {{\pi \over a}} \right)\,{H_0}\,\sin \,\left( {{{2\,\pi \,x} \over a}} \right)\,\,\sin \,(\omega \,t - \,\beta \,z)\hat y$$,

where $${H_0}$$ is a constant, a and b are the dimensions along the x-axis and the y-axis respectively. The mode of propagation in the waveguide is

A
$$T{E_{20}}$$
B
$$T{M_{11}}$$
C
$$T{M_{20}}$$
D
$$T{E_{10}}$$
EXAM MAP
Medical
NEET