1
GATE ECE 2003
MCQ (Single Correct Answer)
+1
-0.3
The Laplace transform of i(t) tends to
$$I\left( s \right)\,\, = \,{2 \over {s\left( {1 + s} \right)}}$$

As $$t \to \infty $$ , the value of i(t) tends to

A
0
B
1
C
2
D
2
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3
Given that $$L\left[ {f\left( t \right)} \right]\, = \,$$ $${{s + 2} \over {{s^2} + 1}},$$ $$$L\left[ {g\left( t \right)} \right] = {{{s^2} + 1} \over {\left( {s + 3} \right)\left( {s + 2} \right)}},$$$ $$$h\left( t \right) = \int\limits_0^t {f\left( \tau \right)\,g\left( {t - \tau } \right)\,d\tau ,} $$$ $$L\left[ {h\left( t \right)} \right]$$ is
A
$${{{s^2} + 1} \over {s + 3}}$$
B
$${1 \over {s + 3}}$$
C
$${{{s^2} + 1} \over {\left( {s + 3} \right)\left( {s + 2} \right)}} + {{s + 2} \over {{s^2} + 1}}$$
D
None of the above
3
GATE ECE 1999
MCQ (Single Correct Answer)
+1
-0.3
$$If\,\,L\left[ {f\left( t \right)} \right]\, = \,F\left( s \right),$$ then $$L\left[ {f\left( {t - T} \right)} \right]$$ is equal to
A
$${e^{sT}}F\left( s \right)\,$$
B
$${e^{ - sT}}\,F\left( s \right)\,\,$$
C
$${{F\left( s \right)} \over {1 + {e^{sT}}}}\,$$
D
$${{F\left( s \right)} \over {1 - {e^{ - sT}}}}$$
4
GATE ECE 1998
MCQ (Single Correct Answer)
+1
-0.3
If L$$\left[ {f\left( t \right)} \right]$$ = $$\omega /\left( {{s^2} + {\omega ^2}} \right),$$ then the value of $$\matrix{ {Lim\,f\,\left( t \right)} \cr {t \to \infty } \cr } $$
A
cannot be determined
B
is zero
C
is unity
D
is infinite
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12