1
GATE ECE 1998
MCQ (Single Correct Answer)
+1
-0.3
If L$$\left[ {f\left( t \right)} \right]$$ = $$\omega /\left( {{s^2} + {\omega ^2}} \right),$$ then the value of $$\matrix{ {Lim\,f\,\left( t \right)} \cr {t \to \infty } \cr } $$
A
cannot be determined
B
is zero
C
is unity
D
is infinite
2
GATE ECE 1997
MCQ (Single Correct Answer)
+1
-0.3
The Laplace Transform of eat .cos$$\left( {\alpha t} \right).u\left( t \right)$$ is equal to
A
$${{\left( {s - \alpha } \right)} \over {{{\left( {s - \alpha } \right)}^2} + {\alpha ^2}}}$$
B
$${{\left( {s + \alpha } \right)} \over {{{\left( {s + \alpha } \right)}^2} + {\alpha ^2}}}$$
C
$${1 \over {{{\left( {s - \alpha } \right)}^2}}}$$
D
none of the above
3
GATE ECE 1995
MCQ (Single Correct Answer)
+1
-0.3
The final value theorem is used to find the
A
steady state value of the system output
B
initial value of the system output
C
transient behavior of the system output
D
none of these
4
GATE ECE 1995
MCQ (Single Correct Answer)
+1
-0.3
If L$$\left[ {f\left( t \right)} \right]$$ = $${{2\left( {s + 1} \right)} \over {{s^2} + 2s + 5}}$$, then $$f\left( {0 + } \right)\,$$ and $$f\left( \infty \right)$$ are given by
A
0, 2 respectively
B
2, 0 respectively
C
0, 1 respectively
D
2/5, 0 respectively
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12