1
GATE ECE 1998
MCQ (Single Correct Answer)
+1
-0.3
If L$$\left[ {f\left( t \right)} \right]$$ = $$\omega /\left( {{s^2} + {\omega ^2}} \right),$$ then the value of $$\matrix{ {Lim\,f\,\left( t \right)} \cr {t \to \infty } \cr } $$
A
cannot be determined
B
is zero
C
is unity
D
is infinite
2
GATE ECE 1997
MCQ (Single Correct Answer)
+1
-0.3
The Laplace Transform of eat .cos$$\left( {\alpha t} \right).u\left( t \right)$$ is equal to
A
$${{\left( {s - \alpha } \right)} \over {{{\left( {s - \alpha } \right)}^2} + {\alpha ^2}}}$$
B
$${{\left( {s + \alpha } \right)} \over {{{\left( {s + \alpha } \right)}^2} + {\alpha ^2}}}$$
C
$${1 \over {{{\left( {s - \alpha } \right)}^2}}}$$
D
none of the above
3
GATE ECE 1995
MCQ (Single Correct Answer)
+1
-0.3
If L$$\left[ {f\left( t \right)} \right]$$ = $${{2\left( {s + 1} \right)} \over {{s^2} + 2s + 5}}$$, then $$f\left( {0 + } \right)\,$$ and $$f\left( \infty \right)$$ are given by
A
0, 2 respectively
B
2, 0 respectively
C
0, 1 respectively
D
2/5, 0 respectively
4
GATE ECE 1995
MCQ (Single Correct Answer)
+1
-0.3
The final value theorem is used to find the
A
steady state value of the system output
B
initial value of the system output
C
transient behavior of the system output
D
none of these
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12