1
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The general solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} - 5y = 0\,\,\,$$ in terms of arbitrary constants $${K_1}$$ and $${K_2}$$ is
A
$${K_1}{e^{\left( { - 1 + \sqrt 6 } \right)x}} + {K_2}{e^{\left( { - 1 - \sqrt 6 } \right)x}}$$
B
$${K_1}{e^{\left( { - 1 + \sqrt 8 } \right)x}} + {K_2}{e^{\left( { - 1 - \sqrt 8 } \right)x}}$$
C
$${K_1}{e^{\left( { - 2 + \sqrt 6 } \right)x}} + {K_2}{e^{\left( { - 2 - \sqrt 6 } \right)x}}$$
D
$${K_1}{e^{\left( { - 2 + \sqrt 8 } \right)x}} + {K_2}{e^{\left( { - 2 - \sqrt 8 } \right)x}}$$
2
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The general solution of the differential equation $$\,\,{{dy} \over {dx}} = {{1 + \cos 2y} \over {1 - \cos 2x}}\,\,$$ is
A
$$\,\,\tan \,y - \cot \,x = C\,\,$$
B
$$\tan \,x - \cot \,y = C\,$$
C
$$\,\,\tan \,y + \cot \,x = C\,\,$$
D
$$\tan \,x + \cot \,y = C\,$$
3
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Consider the differential equation $$\,\,{{dx} \over {dt}} = 10 - 0.2\,x$$ with initial condition $$x(0)=1.$$ The response $$x(t)$$ for $$t > 0$$ is
A
$$2 - {e^{ - 0.2t}}$$
B
$$2 - {e^{ 0.2t}}$$
C
$$50 - 49\,{e^{ - 0.2t}}$$
D
$$50 - 49\,{e^{ 0.2t}}$$
4
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+1
-0.3
If $$a$$ and $$b$$ are constants, the most general solution of the differential equation $$\,{{{d^2}x} \over {d{t^2}}} + 2{{dx} \over {dt}} + x = 0$$ is
A
$$a{e^{ - t}}$$
B
$$a{e^{ - t}} + bt{e^{ - t}}$$
C
$$a{e^t} + bt{e^{ - t}}$$
D
$$a{e^{ - 2t}}$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12