The function $y(t)$ satisfies
$$ t^2 y^{\prime \prime}(t)-2 t y^{\prime}(t)+2 y(t)=0 $$
where $y^{\prime}(t)$ and $y^{\prime \prime}(t)$ denote the first and second derivatives of $y(t)$, respectively. Given $y^{\prime}(0)=1$ and $y^{\prime}(1)=-1$, the maximum value of $y(t)$ over $[0,1]$ is ___________ (rounded off to two decimal places).
The general form of the complementary function of a differential equation is given by $y(t) = (At + B)e^{-2t}$, where $A$ and $B$ are real constants determined by the initial condition. The corresponding differential equation is ____.
Consider the following partial differential equation (PDE)
$$a{{{\partial ^2}f(x,y)} \over {\partial {x^2}}} + b{{{\partial ^2}f(x,y)} \over {\partial {y^2}}} = f(x,y)$$,
where a and b are distinct positive real numbers. Select the combination(s) of values of the real parameters $$\xi $$ and $$\eta $$ such that $$f(x,y) = {e^{\xi x + \eta y}}$$ is a solution of the given PDE.