1
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The divergence of the vector field $$\,\overrightarrow A = x\widehat a{}_x + y\widehat a{}_y + z\widehat a{}_z\,\,$$ is
A
$$0$$
B
$$1/3$$
C
$$1$$
D
$$3$$
2
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The direction of vector $$A$$ is radially outward
from the origin, with $$\left| A \right| = K\,{r^n}$$
where $${r^2} = {x^2} + {y^2} + {z^2}$$ and $$K$$ is constant.
The value of $$n$$ for which $$\nabla .A = 0\,\,$$ is
A
$$-2$$
B
$$2$$
C
$$1$$
D
$$0$$
3
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
If $$\overrightarrow A = xy\,\widehat a{}_x + {x^2}\widehat a{}_y\,\,$$ then $$\,\,\oint {\overrightarrow A .d\overrightarrow r \,\,} $$ over the path shown in the figure is GATE ECE 2010 Engineering Mathematics - Vector Calculus Question 16 English
A
$$0$$
B
$${2 \over {\sqrt 3 }}$$
C
$$1$$
D
$$2\sqrt 3 $$
4
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
If a vector field$$\overrightarrow V $$ is related to another field $$\overrightarrow A $$ through $$\,\overrightarrow V = \nabla \times \overrightarrow A ,$$ which of the following is true?

Note: $$C$$ and $${S_C}$$ refer to any closed contour and any surface whose boundary is $$C.$$

A
$$\oint\limits_C {\overrightarrow V .\,\overrightarrow {dl} } = \int {\int_{{S_C}} {\overrightarrow A .\,\overrightarrow {ds} } } $$
B
$$\oint\limits_C {\overrightarrow A .\,\overrightarrow {dl} } = \int\limits_{{S_C}} {\int {\overrightarrow \nabla .\,\overrightarrow {ds} } } $$
C
$$\oint\limits_C {\nabla \times \vec V.{\mkern 1mu} \overrightarrow {dl} } = \int\limits_{{S_C}} {\int {\nabla \times \vec A.{\mkern 1mu} \overrightarrow {ds} } } $$
D
$$\oint\limits_C {\nabla \times \vec A.{\mkern 1mu} \overrightarrow {dl} } = \int {\int_{{S_C}} {\vec V.{\mkern 1mu} \overrightarrow {ds} } } $$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12