1
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The divergence of the vector field $$\,\overrightarrow A = x\widehat a{}_x + y\widehat a{}_y + z\widehat a{}_z\,\,$$ is
A
$$0$$
B
$$1/3$$
C
$$1$$
D
$$3$$
2
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The direction of vector $$A$$ is radially outward
from the origin, with $$\left| A \right| = K\,{r^n}$$
where $${r^2} = {x^2} + {y^2} + {z^2}$$ and $$K$$ is constant.
The value of $$n$$ for which $$\nabla .A = 0\,\,$$ is
A
$$-2$$
B
$$2$$
C
$$1$$
D
$$0$$
3
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
If $$\overrightarrow A = xy\,\widehat a{}_x + {x^2}\widehat a{}_y\,\,$$ then $$\,\,\oint {\overrightarrow A .d\overrightarrow r \,\,} $$ over the path shown in the figure is GATE ECE 2010 Engineering Mathematics - Vector Calculus Question 12 English
A
$$0$$
B
$${2 \over {\sqrt 3 }}$$
C
$$1$$
D
$$2\sqrt 3 $$
4
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
If a vector field$$\overrightarrow V $$ is related to another field $$\overrightarrow A $$ through $$\,\overrightarrow V = \nabla \times \overrightarrow A ,$$ which of the following is true?

Note: $$C$$ and $${S_C}$$ refer to any closed contour and any surface whose boundary is $$C.$$

A
$$\oint\limits_C {\overrightarrow V .\,\overrightarrow {dl} } = \int {\int_{{S_C}} {\overrightarrow A .\,\overrightarrow {ds} } } $$
B
$$\oint\limits_C {\overrightarrow A .\,\overrightarrow {dl} } = \int\limits_{{S_C}} {\int {\overrightarrow \nabla .\,\overrightarrow {ds} } } $$
C
$$\oint\limits_C {\nabla \times \vec V.{\mkern 1mu} \overrightarrow {dl} } = \int\limits_{{S_C}} {\int {\nabla \times \vec A.{\mkern 1mu} \overrightarrow {ds} } } $$
D
$$\oint\limits_C {\nabla \times \vec A.{\mkern 1mu} \overrightarrow {dl} } = \int {\int_{{S_C}} {\vec V.{\mkern 1mu} \overrightarrow {ds} } } $$
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12