1
GATE ECE 2017 Set 1
+2
-0.6
If the vector function
$$\,\,\overrightarrow F = \widehat a{}_x\left( {3y - k{}_1z} \right) + \widehat a{}_y\left( {k{}_2x - 2z} \right) - \widehat a{}_z\left( {k{}_3y + z} \right)\,\,\,$$
is irrotational, then the values of the constants $$\,{k_1},\,{k_2}\,\,$$ and $$\,{k_3}$$ respectively, are
A
$$0.3, -2.5, 0.5$$
B
$$0.0, 3.0, 2.0$$
C
$$0.3, 0.33, 0.5$$
D
$$4.0, 3.0, 2.0$$
2
GATE ECE 2017 Set 1
Numerical
+2
-0
Let $$\,\,\,{\rm I} = \int_c {\left( {2z\,dx + 2y\,dy + 2x\,dz} \right)} \,\,\,\,$$ where $$x, y, z$$ are real, and let $$C$$ be the straight line segment from point $$A: (0, 2, 1)$$ to point $$B: (4,1,-1).$$ The value of $${\rm I}$$ is ___________.
3
GATE ECE 2016 Set 2
Numerical
+2
-0
Suppose $$C$$ is the closed curve defined as the circle $$\,\,{x^2} + {y^2} = 1\,\,$$ with $$C$$ oriented anti-clockwise. The value of $$\,\,\oint {\left( {x{y^2}dx + {x^2}ydx} \right)\,\,}$$ over the curve $$C$$ equals _______.
4
GATE ECE 2014 Set 4
Numerical
+2
-0
Given $$\,\,\overrightarrow F = z\widehat a{}_x + x\widehat a{}_y + y\widehat a{}_z.\,\,$$ If $$S$$ represents the portion of the sphere $${x^2} + {y^2} + {z^2} = 1$$ for $$\,z \ge 0,$$ then $$\int\limits_s {\left( {\nabla \times \overrightarrow F .} \right)\overrightarrow {ds} \,\,}$$ is ________.