1
GATE ECE 2015 Set 3
Numerical
+2
-0
Let $$\widetilde x\left[ n \right]\, = \,1 + \cos \left[ {{{\pi n} \over 8}} \right]$$ be a periodic signal with period 16. Its DFS coefficients are defined by
$${a_k}$$ = $${1 \over {16}}\sum\limits_{n = 0}^{15} {\widetilde x} \left[ n \right]\exp \left( { - j{\pi \over 8}kn} \right)$$ for all k. The value of the coeffcients $${a_{31}}$$ is _____________________.
$${a_k}$$ = $${1 \over {16}}\sum\limits_{n = 0}^{15} {\widetilde x} \left[ n \right]\exp \left( { - j{\pi \over 8}kn} \right)$$ for all k. The value of the coeffcients $${a_{31}}$$ is _____________________.
Your input ____
2
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
A 5-point sequence x [n] is given as x$$\left[ { - 3} \right]$$ =1, x$$\left[ { - 2} \right]$$ =1, x$$\left[ { - 1} \right]$$ =0, x$$\left[ { - 0} \right]$$ = 5, x$$\left[ { - 1} \right]$$ = 1. Let X$$({e^{j\omega }})\,$$ denote the discrete - time Fourier transform of x(n). The value of $$\int\limits_{ - \pi }^\pi x $$
($$({e^{j\omega }})\,$$ d$$\omega $$ is
3
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
A sequence x(n) has non-zero values as shown in Fig.
The sequence $$$y(n)=\left\{\begin{array}{l}x\left(\frac n2-1\right)\;\;\;for\;n\;even\\0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;n\;odd\end{array}\right.$$$
will be
The sequence $$$y(n)=\left\{\begin{array}{l}x\left(\frac n2-1\right)\;\;\;for\;n\;even\\0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;n\;odd\end{array}\right.$$$
will be
4
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
A sequence x(n) has non-zero values as shown in figure. 1
The Fourier transform of y(2n) will be
The Fourier transform of y(2n) will be
Questions Asked from Discrete Time Signal Fourier Series Fourier Transform (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude