1
GATE ECE 2017 Set 1
Numerical
+2
-0
Let h[n] be the impulse response of a discrete time linear time invariant (LTI) filter. The impulse response is given by h(0)= $${1 \over 3};h\left[ 1 \right] = {1 \over 3};h\left[ 2 \right] = {1 \over 3};\,and\,h\,\left[ n \right]$$ =0 for n < 0 and n > 2. Let H ($$\omega $$) be the Discrete- time Fourier transform (DTFT) of h[n], where $$\omega $$ is the normalized angular frequency in radians. Given that ($${\omega _o}$$) = 0 and 0 < $${\omega _0}$$ < $$\pi $$, the value of $${\omega _o}$$ (in ratians ) is equal to ____________.
Your input ____
2
GATE ECE 2016 Set 1
Numerical
+2
-0
Consider the signal $$x\left[ n \right] = 6\delta \left[ {n + 2} \right] + 3\delta \left[ {n + 1} \right] + 8\delta \left[ n \right] + 7\delta \left[ {n - 1} \right] + 4\delta \left[ {n - 2} \right]$$.
If X$$({e^{t\omega }})$$is the discrete-time Fourier transform of x[n],
then $${1 \over \pi }\int\limits_{ - \pi }^\pi X ({e^{j\omega }}){\sin ^2}(2\omega )d\omega $$ is equal to ____________.
Your input ____
3
GATE ECE 2015 Set 3
Numerical
+2
-0
Let $$\widetilde x\left[ n \right]\, = \,1 + \cos \left[ {{{\pi n} \over 8}} \right]$$ be a periodic signal with period 16. Its DFS coefficients are defined by
$${a_k}$$ = $${1 \over {16}}\sum\limits_{n = 0}^{15} {\widetilde x} \left[ n \right]\exp \left( { - j{\pi \over 8}kn} \right)$$ for all k. The value of the coeffcients $${a_{31}}$$ is _____________________.
$${a_k}$$ = $${1 \over {16}}\sum\limits_{n = 0}^{15} {\widetilde x} \left[ n \right]\exp \left( { - j{\pi \over 8}kn} \right)$$ for all k. The value of the coeffcients $${a_{31}}$$ is _____________________.
Your input ____
4
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
A 5-point sequence x [n] is given as x$$\left[ { - 3} \right]$$ =1, x$$\left[ { - 2} \right]$$ =1, x$$\left[ { - 1} \right]$$ =0, x$$\left[ { - 0} \right]$$ = 5, x$$\left[ { - 1} \right]$$ = 1. Let X$$({e^{j\omega }})\,$$ denote the discrete - time Fourier transform of x(n). The value of $$\int\limits_{ - \pi }^\pi x $$
($$({e^{j\omega }})\,$$ d$$\omega $$ is
Questions Asked from Discrete Time Signal Fourier Series Fourier Transform (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude