1
GATE ECE 2017 Set 1
Numerical
+2
-0
Let h[n] be the impulse response of a discrete time linear time invariant (LTI) filter. The impulse response is given by h(0)= $${1 \over 3};h\left[ 1 \right] = {1 \over 3};h\left[ 2 \right] = {1 \over 3};\,and\,h\,\left[ n \right]$$ =0 for n < 0 and n > 2. Let H ($$\omega$$) be the Discrete- time Fourier transform (DTFT) of h[n], where $$\omega$$ is the normalized angular frequency in radians. Given that ($${\omega _o}$$) = 0 and 0 < $${\omega _0}$$ < $$\pi$$, the value of $${\omega _o}$$ (in ratians ) is equal to ____________.
2
GATE ECE 2017 Set 1
Numerical
+2
-0
Two discrete-time signals x [n] and h [n] are both non-zero only for n = 0, 1, 2 and are zero otherwise. It is given that x(0)=1, x[1] = 2, x [2] =1, h[0] = 1, let y [n] be the linear convolution of x[n] and h [n]. Given that y[1]= 3 and y [2] = 4, the value of the expression (10y[3] +y[4]) is _____________________.
3
GATE ECE 2016 Set 1
Numerical
+2
-0
Consider the signal $$x\left[ n \right] = 6\delta \left[ {n + 2} \right] + 3\delta \left[ {n + 1} \right] + 8\delta \left[ n \right] + 7\delta \left[ {n - 1} \right] + 4\delta \left[ {n - 2} \right]$$.

If X$$({e^{t\omega }})$$is the discrete-time Fourier transform of x[n],

then $${1 \over \pi }\int\limits_{ - \pi }^\pi X ({e^{j\omega }}){\sin ^2}(2\omega )d\omega$$ is equal to ____________.

4
GATE ECE 2015 Set 3
Numerical
+2
-0
Let $$\widetilde x\left[ n \right]\, = \,1 + \cos \left[ {{{\pi n} \over 8}} \right]$$ be a periodic signal with period 16. Its DFS coefficients are defined by
$${a_k}$$ = $${1 \over {16}}\sum\limits_{n = 0}^{15} {\widetilde x} \left[ n \right]\exp \left( { - j{\pi \over 8}kn} \right)$$ for all k. The value of the coeffcients $${a_{31}}$$ is _____________________.