1
GATE ECE 2017 Set 1
Numerical
+2
-0
Let $$\,\,\,{\rm I} = \int_c {\left( {2z\,dx + 2y\,dy + 2x\,dz} \right)} \,\,\,\,$$ where $$x, y, z$$ are real, and let $$C$$ be the straight line segment from point $$A: (0, 2, 1)$$ to point $$B: (4,1,-1).$$ The value of $${\rm I}$$ is ___________.
Your input ____
2
GATE ECE 2016 Set 2
Numerical
+2
-0
Suppose $$C$$ is the closed curve defined as the circle $$\,\,{x^2} + {y^2} = 1\,\,$$ with $$C$$ oriented anti-clockwise. The value of $$\,\,\oint {\left( {x{y^2}dx + {x^2}ydx} \right)\,\,} $$ over the curve $$C$$ equals _______.
Your input ____
3
GATE ECE 2014 Set 4
Numerical
+2
-0
Given $$\,\,\overrightarrow F = z\widehat a{}_x + x\widehat a{}_y + y\widehat a{}_z.\,\,$$ If $$S$$ represents the portion of the sphere $${x^2} + {y^2} + {z^2} = 1$$ for $$\,z \ge 0,$$ then $$\int\limits_s {\left( {\nabla \times \overrightarrow F .} \right)\overrightarrow {ds} \,\,} $$ is ________.
Your input ____
4
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The divergence of the vector field $$\,\overrightarrow A = x\widehat a{}_x + y\widehat a{}_y + z\widehat a{}_z\,\,$$ is
A
$$0$$
B
$$1/3$$
C
$$1$$
D
$$3$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12