1
GATE ME 2012
+2
-0.6
In a $$DC$$ $$arc$$ welding operating, the length characteristic was obtained as $${V_{arc}} = 20 + 5l$$ where the $$arc$$ length $$l$$ was varied between $$5mm$$ and $$7mm.$$ Here $${V_{arc}}$$ denotes the arc voltage in volts. The $$arc$$ current was varied from $$400A$$ to $$500A.$$ Assuming linear power source characteristic, the open circuit voltage and the short circuit current for the welding operation are
A
$$45V, 450A$$
B
$$75V, 750A$$
C
$$95V, 950A$$
D
$$150V, 1500A$$
2
GATE ME 2010
+2
-0.6
Two steel bars each of diameter $$10mm$$ are coaxially friction welded end to end at an axial pressure of $$200MPa$$ and rotational speed of $$400rpm$$. The coefficient of friction between the mating faces of the rotating bars is $$0.50.$$ The torque is assumed to act at the $$3/{4^{th}}$$ radius of the rotating bar. The power (in $$kW$$) consumed at the interface of the welding is
A
$$12.33$$
B
$$16.44$$
C
$$18.50$$
D
$$24.66$$
3
GATE ME 2008
+2
-0.6
In arc welding of a butt joint, the welding speed is to be selected such that highest cooling rate is achieved. Melting efficiency and heat transfer efficiency are $$0.5$$ and $$0.7$$, respectively. The area of the weld cross section is $$5$$ $$m{m^2}$$ and the unit energy required to melt the metal is $$10\,\,J/m{m^3},$$ if the welding power is $$2$$ $$kW,$$ the welding speed in $$mm/s$$ is closet to
A
$$4$$
B
$$14$$
C
$$24$$
D
$$34$$
4
GATE ME 2007
+2
-0.6
A $$DC$$ welding machine with a linear power source characteristic provides open circuit voltage of $$80V$$ and short circuit current of $$800A,$$ during welding with the machine , the measured are current is $$500A$$ corresponding to an arc length of $$5.0$$ $$mm$$ and the measured are current $$460A$$ corresponding to an arc length of $$7.0$$ $$mm.$$ The linear voltage $$(E)$$ & arc length $$(L)$$ characteristic of the welding arc can be given as (where $$E$$ is in Volts and $$L$$ is in $$mm$$)
A
$$E=20+2L$$
B
$$E=20+8L$$
C
$$E=80+2L$$
D
$$E=80+8L$$
GATE ME Subjects
EXAM MAP
Medical
NEET