1
GATE ECE 2007
+1
-0.3
If C is a closed curve enclosing a surface S, then the magnetic field intensity $$\overrightarrow H$$, the current density $$\overrightarrow J$$ and the electric flux density $$\overrightarrow D$$ are related by
A
$$\int\!\!\!\int\limits_S {\overrightarrow H } .d\overrightarrow s = \oint\limits_C {\left( {\overrightarrow J + {{\partial \overrightarrow D } \over {\partial t}}} \right)} .d\overrightarrow l$$
B C D
$$\oint\limits_C {\overrightarrow H } .d\overrightarrow l = \int\!\!\!\int\limits_S {\left( {\overrightarrow J + {{\partial \overrightarrow D } \over {\partial t}}} \right)} .d\overrightarrow s$$
2
GATE ECE 2006
+1
-0.3
$$\int\int\left(\nabla\times\mathrm P\right)\;\cdot\mathrm{ds}$$ , where is a vector, is equal to
A
$$\mathrm P\times\nabla\times\mathrm P\;-\;\nabla^2\;\mathrm P$$
B
$$\nabla^2\;\mathrm P\;+\;\nabla\left(\nabla\cdot\mathrm P\right)$$
C
$$\nabla^2\;\mathrm P\;+\;\nabla\times\mathrm P$$
D
$$\nabla\left(\nabla\cdot\mathrm P\right)-\nabla^2\;\mathrm P\;$$
3
GATE ECE 2006
+1
-0.3
$$\nabla \times \nabla \times P$$, where P is a vector, is equal to
A
$$P \times \nabla \times P - {\nabla ^2}P$$
B
$${\nabla ^2}P + \nabla \left( {\nabla .P} \right)$$
C
$${\nabla ^2}P + \nabla \times P$$
D
$$\nabla \left( {\nabla .P} \right) - {\nabla ^2}P$$
4
GATE ECE 2003
+1
-0.3
The unit of $$\nabla\times\mathrm H$$ is
A
Ampere
B
Ampere/meter
C
Ampere/meter2
D
Ampere - meter
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics
EXAM MAP
Joint Entrance Examination