1
GATE ECE 2007
+1
-0.3
If C is a closed curve enclosing a surface S, then the magnetic field intensity $$\overrightarrow H$$, the current density $$\overrightarrow J$$ and the electric flux density $$\overrightarrow D$$ are related by
A
$$\int\!\!\!\int\limits_S {\overrightarrow H } .d\overrightarrow s = \oint\limits_C {\left( {\overrightarrow J + {{\partial \overrightarrow D } \over {\partial t}}} \right)} .d\overrightarrow l$$
B
C
D
$$\oint\limits_C {\overrightarrow H } .d\overrightarrow l = \int\!\!\!\int\limits_S {\left( {\overrightarrow J + {{\partial \overrightarrow D } \over {\partial t}}} \right)} .d\overrightarrow s$$
2
GATE ECE 2006
+1
-0.3
$$\int\int\left(\nabla\times\mathrm P\right)\;\cdot\mathrm{ds}$$ , where is a vector, is equal to
A
$$\mathrm P\times\nabla\times\mathrm P\;-\;\nabla^2\;\mathrm P$$
B
$$\nabla^2\;\mathrm P\;+\;\nabla\left(\nabla\cdot\mathrm P\right)$$
C
$$\nabla^2\;\mathrm P\;+\;\nabla\times\mathrm P$$
D
$$\nabla\left(\nabla\cdot\mathrm P\right)-\nabla^2\;\mathrm P\;$$
3
GATE ECE 2006
+1
-0.3
$$\nabla \times \nabla \times P$$, where P is a vector, is equal to
A
$$P \times \nabla \times P - {\nabla ^2}P$$
B
$${\nabla ^2}P + \nabla \left( {\nabla .P} \right)$$
C
$${\nabla ^2}P + \nabla \times P$$
D
$$\nabla \left( {\nabla .P} \right) - {\nabla ^2}P$$
4
GATE ECE 2003
+1
-0.3
The unit of $$\nabla\times\mathrm H$$ is
A
Ampere
B
Ampere/meter
C
Ampere/meter2
D
Ampere - meter
EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12