1
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
An ideal sawtooth voltage waveform of a frequency 500 Hz and Amplitude 3 V is generated by charging a capacitor of 2 $$\mu F$$ in every cycle the charging requires
2
GATE ECE 2001
MCQ (Single Correct Answer)
+2
-0.6
An npn BJT has gm = 38 mA/V, $${C_\mu }\, = {10^{ - 14}}$$ F, $${C_\pi }\, = 4\, \times {10^{ - 13}}\,F$$ and DC current gain $$\beta \, = \,90$$. For this transistor fT and $${f_\beta }$$ are
3
GATE ECE 1999
MCQ (Single Correct Answer)
+2
-0.6
An NPN transistor (with $${C_\pi }\,\, = \,\,0.3\,\,$$ pf) has a unity gain cutoff frequency $${f_T}$$ of 400 MHz at a DC-bias current Ic = 1mA. The value of its $${C_\mu }$$ (in pf) is approximately $$\left( {{V_T}\, = \,26\,mV} \right)$$.
4
GATE ECE 1999
MCQ (Single Correct Answer)
+2
-0.6
An amplifier is assumed to have a single pole high frequency transfer function.
The rise time of its output response to a step function input is 35 nsec. The upper 3 dB frequency (in MHz) for the amplifier to a sinusoidal input is approximately at
Questions Asked from Frequency Response (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series
Fourier Transform
Continuous Time Signal Laplace Transform
Discrete Time Signal Fourier Series Fourier Transform
Discrete Fourier Transform and Fast Fourier Transform
Discrete Time Signal Z Transform
Continuous Time Linear Invariant System
Discrete Time Linear Time Invariant Systems
Transmission of Signal Through Continuous Time LTI Systems
Sampling
Transmission of Signal Through Discrete Time Lti Systems
Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics