1
GATE ECE 1999
MCQ (Single Correct Answer)
+1
-0.3
An electric field on a plane is described by its potential V = $$20\left(r^{-1}\;+\;r^{-2}\right)$$ where r is the distance from the source. The field is due to
A
a monopole
B
a dipole
C
both a monopole and a dipole
D
a quadrupole
2
GATE ECE 1998
MCQ (Single Correct Answer)
+1
-0.3
The Maxwell's equation $$\nabla\times\overrightarrow H\;=\;\overrightarrow J\;+\;\frac{\partial\overrightarrow D}{\partial t}$$ is based on
A
Ampere’s law
B
Gauss’ law
C
Faraday’s law
D
Coulomb’s law
3
GATE ECE 1998
MCQ (Single Correct Answer)
+1
-0.3
A loop is rotating about the y-axis in a magnetic field $$$\overrightarrow B\;=\;B_0\cos\left(\mathrm{ωt}\;+\;\mathrm\phi\;\right)\;{\overrightarrow a}_x\;\mathrm T .$$$ The voltage in the loop is
A
zero
B
due to rotation only
C
due to transformer action only
D
due to both rotation and transformer action
4
GATE ECE 1998
MCQ (Single Correct Answer)
+1
-0.3
The time averaged Poynting vector, in W/m2, for a wave with $$\vec E = 24{e^{j\left( {\omega t + \beta z} \right)}}{\mkern 1mu} {\overrightarrow a _y}$$ V/m in free space is
A
$$ - {{2.4} \over \pi }\,{\overrightarrow a _z}$$
B
$${{2.4} \over \pi }\,{\overrightarrow a _z}$$
C
$${{4.8} \over \pi }\,{\overrightarrow a _z}$$
D
$$ - {{4.8} \over \pi }\,{\overrightarrow a _z}$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12