1
JEE Advanced 2023 Paper 2 Online
Numerical
+3
-0
Change Language
A trinitro compound, 1,3,5-tris-(4-nitrophenyl)benzene, on complete reaction with an excess of $\mathrm{Sn} / \mathrm{HCl}$ gives a major product, which on treatment with an excess of $\mathrm{NaNO}_2 / \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$ provides $\mathbf{P}$ as the product. $\mathbf{P}$, upon treatment with excess of $\mathrm{H}_2 \mathrm{O}$ at room temperature, gives the product $\mathbf{Q}$. Bromination of $\mathbf{Q}$ in aqueous medium furnishes the product $\mathbf{R}$. The compound $\mathbf{P}$ upon treatment with an excess of phenol under basic conditions gives the product $\mathbf{S}$.

The molar mass difference between compounds $\mathbf{Q}$ and $\mathbf{R}$ is $474 \mathrm{~g} \mathrm{~mol}^{-1}$ and between compounds $\mathbf{P}$ and $\mathbf{S}$ is $172.5 \mathrm{~g} \mathrm{~mol}^{-1}$.
The total number of carbon atoms and heteroatoms present in one molecule of $\mathbf{S}$ is _________.

[Use : Molar mass (in $\mathrm{g} \mathrm{mol}^{-1}$ ): $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Br}=80, \mathrm{Cl}=35.5$
Atoms other than $\mathrm{C}$ and $\mathrm{H}$ are considered as heteroatoms]
Your input ____
2
JEE Advanced 2023 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that $f(1)=\frac{1}{3}$ and $3 \int\limits_1^x f(t) d t=x f(x)-\frac{x^3}{3}, x \in[1, \infty)$. Let $e$ denote the base of the natural logarithm. Then the value of $f(e)$ is :
A
$\frac{e^2+4}{3}$
B
$\frac{\log _e 4+e}{3}$
C
$\frac{4 e^2}{3}$
D
$\frac{e^2-4}{3}$
3
JEE Advanced 2023 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Consider an experiment of tossing a coin repeatedly until the outcomes of two consecutive tosses are same. If the probability of a random toss resulting in head is $\frac{1}{3}$, then the probability that the experiment stops with head is :
A
$\frac{1}{3}$
B
$\frac{5}{21}$
C
$\frac{4}{21}$
D
$\frac{2}{7}$
4
JEE Advanced 2023 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
For any $y \in \mathbb{R}$, let $\cot ^{-1}(y) \in(0, \pi)$ and $\tan ^{-1}(y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the sum of all the solutions of the equation

$\tan ^{-1}\left(\frac{6 y}{9-y^2}\right)+\cot ^{-1}\left(\frac{9-y^2}{6 y}\right)=\frac{2 \pi}{3}$ for $0<|y|<3$, is equal to :
A
$2 \sqrt{3}-3$
B
$3-2 \sqrt{3}$
C
$4 \sqrt{3}-6$
D
$6-4 \sqrt{3}$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12