1
JEE Advanced 2023 Paper 2 Online
Numerical
+4
-0
Change Language
Let $A_1, A_2, A_3, \ldots, A_8$ be the vertices of a regular octagon that lie on a circle of radius 2 . Let $P$ be a point on the circle and let $P A_i$ denote the distance between the points $P$ and $A_i$ for $i=1,2, \ldots, 8$. If $P$ varies over the circle, then the maximum value of the product $P A_1 \times P A_2 \times \cdots \cdots \times P A_8$, is :
Your input ____
2
JEE Advanced 2023 Paper 2 Online
Numerical
+4
-0
Change Language
Let $R=\left\{\left(\begin{array}{lll}a & 3 & b \\ c & 2 & d \\ 0 & 5 & 0\end{array}\right): a, b, c, d \in\{0,3,5,7,11,13,17,19\}\right\}$.

Then the number of invertible matrices in $R$ is :
Your input ____
3
JEE Advanced 2023 Paper 2 Online
Numerical
+4
-0
Change Language
Let $C_1$ be the circle of radius 1 with center at the origin. Let $C_2$ be the circle of radius $r$ with center at the point $A=(4,1)$, where $1 < r < 3$. Two distinct common tangents $P Q$ and $S T$ of $C_1$ and $C_2$ are drawn. The tangent $P Q$ touches $C_1$ at $P$ and $C_2$ at $Q$. The tangent $S T$ touches $C_1$ at $S$ and $C_2$ at $T$. Mid points of the line segments $P Q$ and $S T$ are joined to form a line which meets the $x$-axis at a point $B$. If $A B=\sqrt{5}$, then the value of $r^2$ is :
Your input ____
4
JEE Advanced 2023 Paper 2 Online
Numerical
+3
-0
Change Language
Consider an obtuse angled triangle $A B C$ in which the difference between the largest and the smallest angle is $\frac{\pi}{2}$ and whose sides are in arithmetic progression. Suppose that the vertices of this triangle lie on a circle of radius 1.
$$ \text { Let } a \text { be the area of the triangle } A B C \text {. Then the value of }(64 a)^2 \text { is } $$ :
Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12