1
JEE Advanced 2023 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
For any $y \in \mathbb{R}$, let $\cot ^{-1}(y) \in(0, \pi)$ and $\tan ^{-1}(y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the sum of all the solutions of the equation

$\tan ^{-1}\left(\frac{6 y}{9-y^2}\right)+\cot ^{-1}\left(\frac{9-y^2}{6 y}\right)=\frac{2 \pi}{3}$ for $0<|y|<3$, is equal to :
A
$2 \sqrt{3}-3$
B
$3-2 \sqrt{3}$
C
$4 \sqrt{3}-6$
D
$6-4 \sqrt{3}$
2
JEE Advanced 2023 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let the position vectors of the points $P, Q, R$ and $S$ be $\vec{a}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{b}=3 \hat{i}+6 \hat{j}+3 \hat{k}$, $\vec{c}=\frac{17}{5} \hat{i}+\frac{16}{5} \hat{j}+7 \hat{k}$ and $\vec{d}=2 \hat{i}+\hat{j}+\hat{k}$, respectively. Then which of the following statements is true?
A
The points $P, Q, R$ and $S$ are NOT coplanar
B
$\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides $P R$ internally in the ratio $5: 4$
C
$\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides $P R$ externally in the ratio $5: 4$
D
The square of the magnitude of the vector $\vec{b} \times \vec{d}$ is 95
3
JEE Advanced 2023 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $M=\left(a_{i j}\right), i, j \in\{1,2,3\}$, be the $3 \times 3$ matrix such that $a_{i j}=1$ if $j+1$ is divisible by $i$, otherwise $a_{i j}=0$. Then which of the following statements is(are) true?
A
$M$ is invertible
B
There exists a nonzero column matrix $\left(\begin{array}{l}a_1 \\ a_2 \\ a_3\end{array}\right)$ such that $M\left(\begin{array}{l}a_1 \\ a_2 \\ a_3\end{array}\right)=\left(\begin{array}{l}-a_1 \\ -a_2 \\ -a_3\end{array}\right)$
C
The set $\left\{X \in \mathbb{R}^3: M X=\mathbf{0}\right\} \neq\{\mathbf{0}\}$, where $\mathbf{0}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
D
The matrix $(M-2 I)$ is invertible, where $I$ is the $3 \times 3$ identity matrix
4
JEE Advanced 2023 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $f:(0,1) \rightarrow \mathbb{R}$ be the function defined as $f(x)=[4 x]\left(x-\frac{1}{4}\right)^2\left(x-\frac{1}{2}\right)$, where $[x]$ denotes the greatest integer less than or equal to $x$. Then which of the following statements is(are) true?
A
The function $f$ is discontinuous exactly at one point in $(0,1)$
B
There is exactly one point in $(0,1)$ at which the function $f$ is continuous but NOT differentiable
C
The function $f$ is NOT differentiable at more than three points in $(0,1)$
D
The minimum value of the function $f$ is $-\frac{1}{512}$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12