1
JEE Advanced 2023 Paper 2 Online
Numerical
+4
-0
For $x \in \mathbb{R}$, let $y(x)$ be a solution of the differential equation
$\left(x^2-5\right) \frac{d y}{d x}-2 x y=-2 x\left(x^2-5\right)^2$ such that $y(2)=7$.
Then the maximum value of the function $y(x)$ is :
$\left(x^2-5\right) \frac{d y}{d x}-2 x y=-2 x\left(x^2-5\right)^2$ such that $y(2)=7$.
Then the maximum value of the function $y(x)$ is :
Your input ____
2
JEE Advanced 2023 Paper 2 Online
Numerical
+4
-0
Let $X$ be the set of all five digit numbers formed using 1,2,2,2,4,4,0. For example, 22240 is in $X$ while 02244 and 44422 are not in $X$. Suppose that each element of $X$ has an equal chance of being chosen. Let $p$ be the conditional probability that an element chosen at random is a multiple of 20 given that it is a multiple of 5 . Then the value of $38 p$ is equal to :
Your input ____
3
JEE Advanced 2023 Paper 2 Online
Numerical
+4
-0
Let $A_1, A_2, A_3, \ldots, A_8$ be the vertices of a regular octagon that lie on a circle of radius 2 . Let $P$ be a point on the circle and let $P A_i$ denote the distance between the points $P$ and $A_i$ for $i=1,2, \ldots, 8$. If $P$ varies over the circle, then the maximum value of the product $P A_1 \times P A_2 \times \cdots \cdots \times P A_8$, is :
Your input ____
4
JEE Advanced 2023 Paper 2 Online
Numerical
+4
-0
Let $R=\left\{\left(\begin{array}{lll}a & 3 & b \\ c & 2 & d \\ 0 & 5 & 0\end{array}\right): a, b, c, d \in\{0,3,5,7,11,13,17,19\}\right\}$.
Then the number of invertible matrices in $R$ is :
Then the number of invertible matrices in $R$ is :
Your input ____
Paper analysis
Total Questions
Chemistry
17
Mathematics
17
Physics
17
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978