1
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
A tangent PT is drawn to the circle $${x^2}\, + {y^2} = 4$$ at the point P $$\left( {\sqrt 3 ,1} \right)$$. A straight line L, perpendicular to PT is a tangent to the circle $${(x - 3)^2}$$ + $${y^2}$$ = 1

A common tangent of the two circles is

A
x = 4
B
y = 2
C
$${x + \sqrt 3 \,y = 4}$$
D
$${x +2 \sqrt 2 \,y = 6}$$
2
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
A tangent PT is drawn to the circle $${x^2}\, + {y^2} = 4$$ at the point P $$\left( {\sqrt 3 ,1} \right)$$. A straight line L, perpendicular to PT is a tangent to the circle $${(x - 3)^2}$$ + $${y^2}$$ = 1.

A possible equation of L is

A
$${x - \sqrt 3 \,y = 1}$$
B
$${x + \sqrt 3 \,y = 1}$$
C
$${x - \sqrt 3 \,y = -1}$$
D
$${x + \sqrt 3 \,y = 5}$$
3
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $${a_1},{a_2},{a_3},.....$$ be in harmonic progression with $${a_1} = 5$$ and $${a_{20}} = 25.$$ The least positive integer $$n$$ for which $${a_n} < 0$$ is
A
22
B
23
C
24
D
25
4
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $${{a_n}}$$ denote the number of all n-digit positive integers formed by the digits 0, 1 or both such that no consecutive digits in them are 0.Let $${{b_n}}$$ = the number of such n-digit integers ending with digit 1 and $${{c_n}}$$ =the number of such n-digit integers ending with digit 0.

Which of the following is correct?

A
$${a_{17}} = {a_{16}} + {a_{15}}$$
B
$${c_{17}} \ne {c_{16}} + {c_{15}}$$
C
$${b_{17}} \ne {b_{16}} + {c_{16}}$$
D
$${a_{17}} = {c_{17}} + {b_{16}}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12