1
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

If P is a 3 $$\times$$ 3 matrix such that PT = 2P + I, where PT is the transpose of P and I is the 3 $$\times$$ 3 identity matrix, then there exists a column matrix $$X = \left[ {\matrix{ x \cr y \cr z \cr } } \right] \ne \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$ such that

A
$$PX = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
B
PX = X
C
PX = 2X
D
PX = $$-$$X
2
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$\alpha$$(a) and $$\beta$$(a) be the roots of the equation $$(\root 3 \of {1 + a} - 1){x^2} + (\sqrt {1 + a} - 1)x + (\root 6 \of {1 + a} - 1) = 0$$ where $$a > - 1$$. Then $$\mathop {\lim }\limits_{a \to {0^ + }} \alpha (a)$$ and $$\mathop {\lim }\limits_{a \to {0^ + }} \beta (a)$$ are

A
$$ - {5 \over 2}$$
B
$$ - {1 \over 2}$$
C
$$ - {7 \over 2}$$
D
$$ - {9 \over 2}$$
3
IIT-JEE 2012 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

For every integer n, let an and bn be real numbers. Let function f : R $$\to$$ R be given by

$$f(x) = \left\{ {\matrix{ {{a_n} + \sin \pi x,} & {for\,x \in [2n,2n + 1]} \cr {{b_n} + \cos \pi x,} & {for\,x \in (2n - 1,2n)} \cr } } \right.$$, for all integers n. If f is continuous, then which of the following hold(s) for all n ?

A
an $$-$$ 1 $$-$$ bn $$-$$ 1 = 0
B
an $$-$$ bn = 1
C
an $$-$$ bn $$+$$ 1 = 1
D
an $$-$$ 1 $$-$$ bn = $$-$$1
4
IIT-JEE 2012 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

If the ad joint of a 3 $$\times$$ 3 matrix P is $$\left[ {\matrix{ 1 & 4 & 4 \cr 2 & 1 & 7 \cr 1 & 1 & 3 \cr } } \right]$$, then the possible value(s) of the determinant of P is(are)

A
$$-$$2
B
$$-$$1
C
1
D
2
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12