1
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Four fair dice $${D_1,}$$ $${D_2,}$$ $${D_3}$$ and $${D_4}$$ ; each having six faces numbered $$1, 2, 3, 4, 5$$ and $$6$$ are rolled simultaneously. The probability that $${D_4}$$ shows a number appearing on one of $${D_1},$$ $${D_2}$$ and $${D_3}$$ is
2
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
The value of the integral $$\int\limits_{ - \pi /2}^{\pi /2} {\left( {{x^2} + 1n{{\pi + x} \over {\pi - x}}} \right)\cos xdx} $$ is
3
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f\left( x \right) = {\left( {1 - x} \right)^2}\,\,{\sin ^2}\,\,x + {x^2}$$ for all $$x \in IR$$ and let
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
Consider the statements:
$$P:$$ There exists some $$x \in R$$ such that $$f\left( x \right) + 2x = 2\left( {1 + {x^2}} \right)$$
$$Q:\,\,$$ There exists some $$x \in R$$ such that $$2\,f\left( x \right) + 1 = 2x\left( {1 + x} \right)$$
Then
4
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f\left( x \right) = {\left( {1 - x} \right)^2}\,\,{\sin ^2}\,\,x + {x^2}$$ for all $$x \in IR$$ and let
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.
Which of the following is true?
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978