1
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f\left( x \right) = {\left( {1 - x} \right)^2}\,\,{\sin ^2}\,\,x + {x^2}$$ for all $$x \in IR$$ and let
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.

Consider the statements:
$$P:$$ There exists some $$x \in R$$ such that $$f\left( x \right) + 2x = 2\left( {1 + {x^2}} \right)$$
$$Q:\,\,$$ There exists some $$x \in R$$ such that $$2\,f\left( x \right) + 1 = 2x\left( {1 + x} \right)$$
Then

A
both $$P$$ and $$Q$$ are true
B
$$P$$ is true and $$Q$$ is false
C
$$P$$ is false and $$Q$$ is true
D
both $$P$$ and $$Q$$ are false
2
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f\left( x \right) = {\left( {1 - x} \right)^2}\,\,{\sin ^2}\,\,x + {x^2}$$ for all $$x \in IR$$ and let
$$g\left( x \right) = \int\limits_1^x {\left( {{{2\left( {t - 1} \right)} \over {t + 1}} - In\,t} \right)f\left( t \right)dt} $$ for all $$x \in \left( {1,\,\infty } \right)$$.

Which of the following is true?

A
$$g$$ is increasing on $$\left( {1,\infty } \right)$$
B
$$g$$ is decreasing on $$\left( {1,\infty } \right)$$
C
$$g$$ is increasing on $$(1, 2)$$ and decreasing on $$\left( {2,\infty } \right)$$
D
$$g$$ is decreasing on $$(1, 2)$$ and increasing on $$\left( {2,\infty } \right)$$
3
IIT-JEE 2012 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
If $$f\left( x \right) = \int_0^x {{e^{{t^2}}}} \left( {t - 2} \right)\left( {t - 3} \right)dt$$ for all $$x \in \left( {0,\infty } \right),$$ then
A
$$f$$ has a local maximum at $$x=2$$
B
$$f$$ is decreasing on $$(2, 3)$$
C
there exists some $$c \in \left( {0,\infty } \right),$$ such that $$f'(c)=0$$
D
$$f$$ has a local minimum at $$x=3$$
4
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$PQR$$ be a triangle of area $$\Delta $$ with $$a=2$$, $$b = {7 \over 2}$$ and $$c = {5 \over 2}$$; where $$a, b,$$ and $$c$$ are the lengths of the sides of the triangle opposite to the angles at $$P.Q$$ and $$R$$ respectively. Then $${{2\sin P - \sin 2P} \over {2\sin P + \sin 2P}}$$ equals.
A
$${3 \over {4\Delta }}$$
B
$${45 \over {4\Delta }}$$
C
$${\left( {{3 \over {4\Delta }}} \right)^2}$$
D
$${\left( {{45 \over {4\Delta }}} \right)^2}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12