1
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$\alpha$$(a) and $$\beta$$(a) be the roots of the equation $$(\root 3 \of {1 + a} - 1){x^2} + (\sqrt {1 + a} - 1)x + (\root 6 \of {1 + a} - 1) = 0$$ where $$a > - 1$$. Then $$\mathop {\lim }\limits_{a \to {0^ + }} \alpha (a)$$ and $$\mathop {\lim }\limits_{a \to {0^ + }} \beta (a)$$ are

A
$$ - {5 \over 2}$$
B
$$ - {1 \over 2}$$
C
$$ - {7 \over 2}$$
D
$$ - {9 \over 2}$$
2
IIT-JEE 2012 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

For every integer n, let an and bn be real numbers. Let function f : R $$\to$$ R be given by

$$f(x) = \left\{ {\matrix{ {{a_n} + \sin \pi x,} & {for\,x \in [2n,2n + 1]} \cr {{b_n} + \cos \pi x,} & {for\,x \in (2n - 1,2n)} \cr } } \right.$$, for all integers n. If f is continuous, then which of the following hold(s) for all n ?

A
an $$-$$ 1 $$-$$ bn $$-$$ 1 = 0
B
an $$-$$ bn = 1
C
an $$-$$ bn $$+$$ 1 = 1
D
an $$-$$ 1 $$-$$ bn = $$-$$1
3
IIT-JEE 2012 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

If the ad joint of a 3 $$\times$$ 3 matrix P is $$\left[ {\matrix{ 1 & 4 & 4 \cr 2 & 1 & 7 \cr 1 & 1 & 3 \cr } } \right]$$, then the possible value(s) of the determinant of P is(are)

A
$$-$$2
B
$$-$$1
C
1
D
2
4
IIT-JEE 2012 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

Let $$f:( - 1,1) \to R$$ be such that $$f(\cos 4\theta ) = {2 \over {2 - {{\sec }^2}\theta }}$$ for $$\theta \in \left( {0,{\pi \over 4}} \right) \cup \left( {{\pi \over 4},{\pi \over 2}} \right)$$. Then the value(s) of $$f\left( {{1 \over 3}} \right)$$ is(are)

A
$$1 - \sqrt {{3 \over 2}} $$
B
$$1 + \sqrt {{3 \over 2}} $$
C
$$1 - \sqrt {{2 \over 3}} $$
D
$$1 + \sqrt {{2 \over 3}} $$
JEE Advanced Papers
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN