1
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by

$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Which of the following is true?

A
$$f(x)$$ is decreasing on $$(-1,1)$$ and has a local minimum at $$x=1$$
B
$$f(x)$$ is increasing on $$(-1,1)$$ and has a local minimum at $$x=1$$
C
$$f(x)$$ is increasing on $$(-1,1)$$ but has neither a local maximum nor a local minimum at $$x=1$$
D
$$f(x)$$ is decreasing on $$(-1,1)$$ but has neither a local maximum nor a local minimum at $$x=1$$
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
A particle P stats from the point $${z_0}$$ = 1 +2i, where $$i = \sqrt { - 1} $$. It moves horizontally away from origin by 5 unit and then vertically away from origin by 3 units to reach a point $${z_1}$$. From $${z_1}$$ the particle moves $$\sqrt 2 $$ units in the direction of the vector $$\hat i + \hat j$$ and then it moves through an angle $${\pi \over 2}$$ in anticlockwise direction on a circle with centre at origin, to reach a point $${z_2}$$. The point $${z_2}$$ is given by
A
6 + 7i
B
-7 + 6i
C
7 + 6i
D
- 6 + 7i
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Consider the lines,

$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}$$

$${L_2}:{{x - 2} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 3}$$

The shortest distance between $${L_1}$$ and $${L_2}$$ is :

A
$$0$$
B
$${17 \over {\sqrt 3 }}$$
C
$${41 \over {5\sqrt 3 }}$$
D
$${17 \over {5\sqrt 3 }}$$
4
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the lines

$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}$$

$${L_2}:{{x - 2} \over 1} = {{y + 2} \over 2} = {{z - 3} \over 3}$$

The unit vector perpendicular to both $${L_1}$$ and $${L_2}$$ is :

A
$${{ - \widehat i + 7\widehat j + 7\widehat k} \over {\sqrt {99} }}$$
B
$${{ - \widehat i - 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
C
$${{ - \widehat i + 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
D
$${{7\widehat i - 7\widehat j - \widehat k} \over {\sqrt {99} }}$$
JEE Advanced Papers
EXAM MAP