1
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Consider a branch of the hyperbola $$${x^2} - 2{y^2} - 2\sqrt 2 x - 4\sqrt 2 y - 6 = 0$$$

with vertex at the point $$A$$. Let $$B$$ be one of the end points of its latus rectum. If $$C$$ is the focus of the hyperbola nearest to the point $$A$$, then the area of the triangle $$ABC$$ is

A
$$1 - \sqrt {{2 \over 3}} $$
B
$$\sqrt {{3 \over 2}} - 1$$
C
$$1 + \sqrt {{2 \over 3}} $$
D
$$\sqrt {{3 \over 2}} + 1$$
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$g(x) = \log f(x)$$, where $$f(x)$$ is a twice differentiable positive function on (0, $$\infty$$) such that $$f(x + 1) = xf(x)$$. Then for N = 1, 2, 3, ..., $$g''\left( {N + {1 \over 2}} \right) - g''\left( {{1 \over 2}} \right) = $$

A
$$ - 4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N - 1} \right)}^2}}}} \right\}$$
B
$$4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N - 1} \right)}^2}}}} \right\}$$
C
$$ - 4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N + 1} \right)}^2}}}} \right\}$$
D
$$4\left\{ {1 + {1 \over 9} + {1 \over {25}} + ....... + {1 \over {{{\left( {2N + 1} \right)}^2}}}} \right\}$$
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let the function $$g:\left( { - \infty ,\infty } \right) \to \left( { - {\pi \over 2},{\pi \over 2}} \right)$$ be given by

$$g\left( u \right) = 2{\tan ^{ - 1}}\left( {{e^u}} \right) - {\pi \over 2}.$$ Then, $$g$$ is
A
even and is strictly increasing in $$\left( {0,\infty } \right)$$
B
odd and is strictly decreasing in $$\left( { - \infty ,\infty } \right)$$
C
odd and is strictly increasing in $$\left( { - \infty ,\infty } \right)$$
D
neither even nor odd, but is strictly increasing in $$\left( { - \infty ,\infty } \right)$$
4
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$I = \int {{{{e^x}} \over {{e^{4x}} + {e^{2x}} + 1}}dx,\,\,J = \int {{{{e^{ - x}}} \over {{e^{ - 4x}} + {e^{ - 2x}} + 1}}dx.} } $$ Then

for an arbitrary constant $$C$$, the value of $$J -I$$ equals :
A
$${1 \over 2}\log \left( {{{{e^{4x}} - {e^{2x}} + 1} \over {{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B
$${1 \over 2}\log \left( {{{{e^{2x}} + {e^x} + 1} \over {{e^{2x}} - {e^x} + 1}}} \right) + C$$
C
$${1 \over 2}\log \left( {{{{e^{2x}} - {e^x} + 1} \over {{e^{2x}} + {e^x} + 1}}} \right) + C$$
D
$${1 \over 2}\log \left( {{{{e^{4x}} + {e^{2x}} + 1} \over {{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12