1
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
The area of the region between the curves $$y = \sqrt {{{1 + \sin x} \over {\cos x}}}$$
and $$y = \sqrt {{{1 - \sin x} \over {\cos x}}}$$ bounded by the lines $$x=0$$ and $$x = {\pi \over 4}$$ is
A
$$\int\limits_0^{\sqrt 2 - 1} {{t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt}$$
B
$$\int\limits_0^{\sqrt 2 - 1} {{4t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt}$$
C
$$\int\limits_0^{\sqrt 2 + 1} {{4t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt}$$
D
$$\int\limits_0^{\sqrt 2 + 1} {{t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt}$$
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by

$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Which of the following is true?

A
$${\left( {2 + a} \right)^2}f''\left( 1 \right) + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$$
B
$${\left( {2 - a} \right)^2}f''\left( 1 \right) - {\left( {2 + a} \right)^2}f''\left( { - 1} \right) = 0$$
C
$$f'\left( 1 \right)f'\left( { - 1} \right) = {\left( {2 - a} \right)^2}$$
D
$$f'\left( 1 \right)f'\left( { - 1} \right) = -{\left( {2 + a} \right)^2}$$
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by

$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Which of the following is true?

A
$$f(x)$$ is decreasing on $$(-1,1)$$ and has a local minimum at $$x=1$$
B
$$f(x)$$ is increasing on $$(-1,1)$$ and has a local minimum at $$x=1$$
C
$$f(x)$$ is increasing on $$(-1,1)$$ but has neither a local maximum nor a local minimum at $$x=1$$
D
$$f(x)$$ is decreasing on $$(-1,1)$$ but has neither a local maximum nor a local minimum at $$x=1$$
4
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by
$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Let $$g\left( x \right) = \int\limits_0^{{e^x}} {{{f'\left( t \right)} \over {1 + {t^2}}}} \,dt.$$

Which of the following is true?

A
$$g'(x)$$ is positive on $$\left( { - \infty ,0} \right)$$ and negative on $$\left( {0,\infty } \right)$$
B
$$g'(x)$$ is negative on $$\left( { - \infty ,0} \right)$$ and positive on $$\left( {0,\infty } \right)$$
C
$$g'(x)$$ changes sign on both $$\left( { - \infty ,0} \right)$$ and $$\left( {0,\infty } \right)$$
D
$$g'(x)$$ does not change sign on $$\left( { - \infty ,0} \right)$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12
Â© ExamGOAL 2024