1
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by
$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Let $$g\left( x \right) = \int\limits_0^{{e^x}} {{{f'\left( t \right)} \over {1 + {t^2}}}} \,dt.$$

Which of the following is true?

A
$$g'(x)$$ is positive on $$\left( { - \infty ,0} \right)$$ and negative on $$\left( {0,\infty } \right)$$
B
$$g'(x)$$ is negative on $$\left( { - \infty ,0} \right)$$ and positive on $$\left( {0,\infty } \right)$$
C
$$g'(x)$$ changes sign on both $$\left( { - \infty ,0} \right)$$ and $$\left( {0,\infty } \right)$$
D
$$g'(x)$$ does not change sign on $$\left( { - \infty ,0} \right)$$
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by

$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Which of the following is true?

A
$${\left( {2 + a} \right)^2}f''\left( 1 \right) + {\left( {2 - a} \right)^2}f''\left( { - 1} \right) = 0$$
B
$${\left( {2 - a} \right)^2}f''\left( 1 \right) - {\left( {2 + a} \right)^2}f''\left( { - 1} \right) = 0$$
C
$$f'\left( 1 \right)f'\left( { - 1} \right) = {\left( {2 - a} \right)^2}$$
D
$$f'\left( 1 \right)f'\left( { - 1} \right) = -{\left( {2 + a} \right)^2}$$
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
The area of the region between the curves $$y = \sqrt {{{1 + \sin x} \over {\cos x}}} $$
and $$y = \sqrt {{{1 - \sin x} \over {\cos x}}} $$ bounded by the lines $$x=0$$ and $$x = {\pi \over 4}$$ is
A
$$\int\limits_0^{\sqrt 2 - 1} {{t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
B
$$\int\limits_0^{\sqrt 2 - 1} {{4t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
C
$$\int\limits_0^{\sqrt 2 + 1} {{4t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
D
$$\int\limits_0^{\sqrt 2 + 1} {{t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
4
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$I = \int {{{{e^x}} \over {{e^{4x}} + {e^{2x}} + 1}}dx,\,\,J = \int {{{{e^{ - x}}} \over {{e^{ - 4x}} + {e^{ - 2x}} + 1}}dx.} } $$ Then

for an arbitrary constant $$C$$, the value of $$J -I$$ equals :
A
$${1 \over 2}\log \left( {{{{e^{4x}} - {e^{2x}} + 1} \over {{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B
$${1 \over 2}\log \left( {{{{e^{2x}} + {e^x} + 1} \over {{e^{2x}} - {e^x} + 1}}} \right) + C$$
C
$${1 \over 2}\log \left( {{{{e^{2x}} - {e^x} + 1} \over {{e^{2x}} + {e^x} + 1}}} \right) + C$$
D
$${1 \over 2}\log \left( {{{{e^{4x}} + {e^{2x}} + 1} \over {{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12