1
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Consider the lines,

$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}$$

$${L_2}:{{x - 2} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 3}$$

The shortest distance between $${L_1}$$ and $${L_2}$$ is :

A
$$0$$
B
$${17 \over {\sqrt 3 }}$$
C
$${41 \over {5\sqrt 3 }}$$
D
$${17 \over {5\sqrt 3 }}$$
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Consider the lines,

$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}$$

$${L_2}:{{x - 2} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 3}$$

The distance of the point $$(1, 1, 1)$$ from the plane passing through the point $$(-1, -2, -1)$$ and whose normal is perpendicular to both the lines $${L_1}$$ and $${L_2}$$ is :
A
$${2 \over {\sqrt {75} }}$$
B
$${7 \over {\sqrt {75} }}$$
C
$${13 \over {\sqrt {75} }}$$
D
$${23 \over {\sqrt {75} }}$$
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the lines

$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}$$

$${L_2}:{{x - 2} \over 1} = {{y + 2} \over 2} = {{z - 3} \over 3}$$

The unit vector perpendicular to both $${L_1}$$ and $${L_2}$$ is :

A
$${{ - \widehat i + 7\widehat j + 7\widehat k} \over {\sqrt {99} }}$$
B
$${{ - \widehat i - 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
C
$${{ - \widehat i + 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
D
$${{7\widehat i - 7\widehat j - \widehat k} \over {\sqrt {99} }}$$
4
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let two non-collinear unit vectors $$\widehat a$$ and $$\widehat b$$ form an acute angle. A point $$P$$ moves so that at any time $$t$$ the position vector $$\overrightarrow {OP} $$ (where $$O$$ is the origin) is given by $$\widehat a\cos t + \widehat b\sin t.$$ When $$P$$ is farthest from origin $$O,$$ let $$M$$ be the length of $$\overrightarrow {OP} $$ and $$\widehat u$$ be the unit vector along $$\overrightarrow {OP} $$. Then :
A
$$\widehat u = {{\widehat a + \widehat b} \over {\left| {\widehat a + \widehat b} \right|}}\,\,and\,\,M = {\left( {1 + \widehat a.\,\widehat b} \right)^{1/2}}$$
B
$$\widehat u = {{\widehat a - \widehat b} \over {\left| {\widehat a - \widehat b} \right|}}\,\,and\,\,M = {\left( {1 + \widehat a.\,\widehat b} \right)^{1/2}}$$
C
$$\widehat u = {{\widehat a + \widehat b} \over {\left| {\widehat a + \widehat b} \right|}}\,\,and\,\,M = {\left( {1 + 2\widehat a.\,\widehat b} \right)^{1/2}}$$
D
$$\widehat u = {{\widehat a - \widehat b} \over {\left| {\widehat a - \widehat b} \right|}}\,\,and\,\,M = {\left( {1 + 2\widehat a.\,\widehat b} \right)^{1/2}}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12