1
IIT-JEE 2000
Subjective
+10
-0
Let $${C_1}$$ and $${C_2}$$ be respectively, the parabolas $${x^2} = y - 1$$ and $${y^2} = x - 1$$. Let $$P$$ be any point on $${C_1}$$ and $$Q$$ be any point on $${C_2}$$. Let $${P_1}$$ and $${Q_1}$$ be the reflections of $$P$$ and $$Q$$, respectively, with respect to the line $$y=x$$. Prove that $${P_1}$$ lies on $${C_2}$$, $${Q_1}$$ lies on $${C_1}$$ and $$PQ \ge $$ min $$\left\{ {P{P_1},Q{Q_1}} \right\}$$. Hence or otherwise determine points $${P_0}$$ and $${Q_0}$$ on the parabolas $${C_1}$$ and $${C_2}$$ respectively such that $${P_0}{Q_0} \le PQ$$ for all pairs of points $$(P,Q)$$ with $$P$$ on $${C_1}$$ and $$Q$$ on $${C_2}$$.
2
IIT-JEE 2000
Subjective
+7
-0
Let $$ABC$$ be an equilateral triangle inscribed in the circle $${x^2} + {y^2} = {a^2}$$. Suppose perpendiculars from $$A, B, C$$ to the major axis of the ellipse $$x.{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$(a>b)$$ meets the ellipse respectively, at $$P, Q, R$$. so that $$P, Q, R$$ lie on the same side of the major axis as $$A, B, C$$ respectively. Prove that the normals to the ellipse drawn at the points $$P, Q$$ and $$R$$ are concurrent.
3
IIT-JEE 2000
Subjective
+10
-0
Let $$ABC$$ and $$PQR$$ be any two triangles in the same plane. Assume that the prependiculars from the points $$A, B, C$$ to the sides $$QR, RP, PQ$$ respectively are concurrent. Using vector methods or otherwise, prove that the prependiculars from $$P, Q, R $$ to $$BC,$$ $$CA$$, $$AB$$ respectively are also concurrent.
4
IIT-JEE 2000
Subjective
+10
-0
For points $$P\,\,\, = \left( {{x_1},\,{y_1}} \right)$$ and $$Q\,\,\, = \left( {{x_2},\,{y_2}} \right)$$ of the co-ordinate plane, a new distance $$d\left( {P,\,Q} \right)$$ is defined by $$d\left( {P,\,Q} \right)$$$$ = \left( {{x_2},\,{y_2}} \right)\left| {{x_1} - {x_2}} \right| + \left| {{y_1} - {y_2}} \right|.$$ Let $$O = (0, 0)$$ and $$A = (3, 2)$$. Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from $$O$$ and $$A$$ consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12