1
IIT-JEE 2000
Subjective
+6
-0
For every possitive integer $$n$$, prove that
$$\sqrt {\left( {4n + 1} \right)} < \sqrt n + \sqrt {n + 1} < \sqrt {4n + 2}.$$
Hence or otherwise, prove that $$\left[ {\sqrt n + \sqrt {\left( {n + 1} \right)} } \right] = \left[ {\sqrt {4n + 1} \,\,} \right],$$
where $$\left[ x \right]$$ denotes the gratest integer not exceeding $$x$$.
2
IIT-JEE 2000
Subjective
+6
-0
Let $$a,\,b,\,c$$ be possitive real numbers such that $${b^2} - 4ac > 0$$ and let $${\alpha _1} = c.$$ Prove by induction that $${\alpha _{n + 1}} = {{a\alpha _n^2} \over {\left( {{b^2} - 2a\left( {{\alpha _1} + {\alpha _2} + ... + {\alpha _n}} \right)} \right)}}$$ is well-defined and
$${\alpha _{n + 1}} < {{{\alpha _n}} \over 2}$$ for all $$n = 1,2,....$$ (Here, 'well-defined' means that the denominator in the expression for $${\alpha _{n + 1}}$$ is not zero.)
3
IIT-JEE 2000
Subjective
+5
-0
A coin probability $$p$$ of showing head when tossed. It is tossed $$n$$ times. Let $${p_n}$$ denote the probability that no two (or more) consecutive heads occur. Prove that $${p_1} = 1,\,\,{p_2} = 1 - {p^2}$$ and $${p_n} = \left( {1 - p} \right).\,\,{p_{n - 1}} + p\left( {1 - p} \right){p_{n - 2}}$$ for all $$n \ge 3.$$

Prove by induction on, that $${p_n} = A{\alpha ^n} + B{\beta ^n}$$ for all $$n \ge 1,$$ where $$\alpha$$ and $$\beta$$ are the roots of quadratic equation $${x^2} - \left( {1 - p} \right)x - p\left( {1 - p} \right) = 0$$ and $$A = {{{p^2} + \beta - 1} \over {\alpha \beta - {\alpha ^2}}},B = {{{p^2} + \alpha - 1} \over {\alpha \beta - {\beta ^2}}}.$$

4
IIT-JEE 2000
Subjective
+4
-0
The fourth power of the common difference of an arithmatic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.
EXAM MAP
Medical
NEET