1
IIT-JEE 2000
Subjective
+4
-0
The fourth power of the common difference of an arithmatic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.
2
IIT-JEE 2000
Subjective
+10
-0
For points $$P\,\,\, = \left( {{x_1},\,{y_1}} \right)$$ and $$Q\,\,\, = \left( {{x_2},\,{y_2}} \right)$$ of the co-ordinate plane, a new distance $$d\left( {P,\,Q} \right)$$ is defined by $$d\left( {P,\,Q} \right)$$$$ = \left( {{x_2},\,{y_2}} \right)\left| {{x_1} - {x_2}} \right| + \left| {{y_1} - {y_2}} \right|.$$ Let $$O = (0, 0)$$ and $$A = (3, 2)$$. Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from $$O$$ and $$A$$ consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.
3
IIT-JEE 2000
Subjective
+10
-0
Let $$ABC$$ and $$PQR$$ be any two triangles in the same plane. Assume that the prependiculars from the points $$A, B, C$$ to the sides $$QR, RP, PQ$$ respectively are concurrent. Using vector methods or otherwise, prove that the prependiculars from $$P, Q, R $$ to $$BC,$$ $$CA$$, $$AB$$ respectively are also concurrent.
4
IIT-JEE 2000
Subjective
+7
-0
Let $$ABC$$ be an equilateral triangle inscribed in the circle $${x^2} + {y^2} = {a^2}$$. Suppose perpendiculars from $$A, B, C$$ to the major axis of the ellipse $$x.{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$(a>b)$$ meets the ellipse respectively, at $$P, Q, R$$. so that $$P, Q, R$$ lie on the same side of the major axis as $$A, B, C$$ respectively. Prove that the normals to the ellipse drawn at the points $$P, Q$$ and $$R$$ are concurrent.
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12