1
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If a, b, c, d are positive real numbers such that a + b + c + d = 2, then M = (a + b) (c + d) satisfies the relation
A
$$0 \le M \le 1$$
B
$$1 \le M \le 2$$
C
$$2 \le M \le 3$$
D
$$3 \le M \le 4$$
2
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
For the equation $$3{x^2} + px + 3 = 0$$. p > 0, if one of the root is square of the other, then p is equal to
A
1/3
B
1
C
3
D
2/3
3
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$\alpha \,\text{and}\,\beta $$ $$(\alpha \, < \,\beta )$$ are the roots of the equation $${x^2} + bx + c = 0\,$$, where $$c < 0 < b$$, then
A
$$0 < \alpha \, < \,\beta \,$$
B
$$\alpha \, < \,0 < \beta \,<\left| \alpha \right|$$
C
$$\alpha \, < \beta \, < 0\,$$
D
$$\alpha \, < \,0 < \left| \alpha \right| < \beta $$
4
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
For $$2 \le r \le n,\,\,\,\,\left( {\matrix{ n \cr r \cr } } \right) + 2\left( {\matrix{ n \cr {r - 1} \cr } } \right) + \left( {\matrix{ n \cr {r - 2} \cr } } \right) = $$
A
$$\left( {\matrix{ {n + 1} \cr {r - 1} \cr } } \right)$$
B
$$2\left( {\matrix{ {n + 1} \cr {r + 1} \cr } } \right)$$
C
$$2\left( {\matrix{ {n + 2} \cr r \cr } } \right)$$
D
$$\left( {\matrix{ {n + 2} \cr r \cr } } \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12