1
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+3
-0.75
The incentre of the triangle with vertices $$\left( {1,\,\sqrt 3 } \right),\left( {0,\,0} \right)$$ and $$\left( {2,\,0} \right)$$ is
A
$$\left( {1,\,{{\sqrt 3 } \over 2}} \right)$$
B
$$\left( {{2 \over 3},\,{1 \over {\sqrt 3 }}} \right)$$
C
$$\left( {{2 \over 3},\,{{\sqrt 3 } \over 2}} \right)$$
D
$$\left( {1,\,{1 \over {\sqrt 3 }}} \right)$$
2
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$\arg \left( z \right) < 0,$$ then $$\arg \left( { - z} \right) - \arg \left( z \right) = $$
A
$$\pi $$
B
$$ - \pi $$
C
$$ - {\pi \over 2}$$
D
$${\pi \over 2}$$
3
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $${z_1},\,{z_2}$$ and $${z_3}$$ are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = \left| {{1 \over {{z_1}}} + {1 \over {{z_2}}} + {1 \over {{z_3}}}} \right| = 1,$$ then $$\left| {{z_1} + {z_2} + {z_3}} \right|$$ is
A
equal to 1
B
less than 1
C
greater than 3
D
equal to 3
4
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If a, b, c, d are positive real numbers such that a + b + c + d = 2, then M = (a + b) (c + d) satisfies the relation
A
$$0 \le M \le 1$$
B
$$1 \le M \le 2$$
C
$$2 \le M \le 3$$
D
$$3 \le M \le 4$$
JEE Advanced Papers
EXAM MAP