1
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
Let $$f\left( x \right) = \left\{ {\matrix{ {\left| x \right|,} & {for} & {0 < \left| x \right| \le 2} \cr {1,} & {for} & {x = 0} \cr } } \right.$$ then at $$x=0$$, $$f$$ has
A
a local maximum
B
no local maximum
C
a local minimum
D
no extremum
2
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+3
-0.75
If $$f\left( x \right) = \left\{ {\matrix{ {{e^{\cos x}}\sin x,} & {for\,\,\left| x \right| \le 2} \cr {2,} & {otherwise,} \cr } } \right.$$ then $$\int\limits_{ - 2}^3 {f\left( x \right)dx = } $$
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$
3
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
Let $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,} $$ where f is such that
$${1 \over 2} \le f\left( t \right) \le 1,$$ for $$t \in \left[ {0,1} \right]$$ and $$\,0 \le f\left( t \right) \le {1 \over 2},$$ for $$t \in \left[ {1,2} \right]$$.
Then $$g(2)$$ satisfies the inequality
A
$$ - {3 \over 2} \le g\left( 2 \right) < {1 \over 2}$$
B
$$0 \le g\left( 2 \right) < 2$$
C
$${3 \over 2} < g\left( 2 \right) \le {5 \over 2}$$
D
$$2 < g\left( 2 \right) < 4$$
4
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+3
-0.75
The value of the integral $$\int\limits_{{e^{ - 1}}}^{{e^2}} {\left| {{{{{\log }_e}x} \over x}} \right|dx} $$ is :
A
$$3/2$$
B
$$5/2$$
C
$$3$$
D
$$5$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12