1
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+4
-1
Let the vectors $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ be such that
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = 0.$$ Let $${P_1}$$ and $${P_2}$$ be planes determined
by the pairs of vectors $$\overrightarrow a .\overrightarrow b $$ and $$\overrightarrow c .\overrightarrow d $$ respectively. Then the angle between $${P_1}$$ and $${P_2}$$ is
A
$$0$$
B
$${\pi \over 4}$$
C
$${\pi \over 3}$$
D
$${\pi \over 2}$$
2
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a \,,\,\overrightarrow b $$ and $$\overrightarrow c $$ are unit coplanar vectors, then the scalar triple product $$\left[ {2\overrightarrow a - \overrightarrow b ,2\overrightarrow b - \overrightarrow c ,2\overrightarrow c - \overrightarrow a } \right] = $$
A
$$0$$
B
$$1$$
C
$$ - \sqrt 3 $$
D
$$ \sqrt 3 $$
3
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If the normal to the curve $$y = f\left( x \right)$$ and the point $$(3, 4)$$ makes an angle $${{{3\pi } \over 4}}$$ with the positive $$x$$-axis, then $$f'\left( 3 \right) = $$
A
$$-1$$
B
$$ - {3 \over 4}$$
C
$${4 \over 3}$$
D
$$1$$
4
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+3
-0.75
The incentre of the triangle with vertices $$\left( {1,\,\sqrt 3 } \right),\left( {0,\,0} \right)$$ and $$\left( {2,\,0} \right)$$ is
A
$$\left( {1,\,{{\sqrt 3 } \over 2}} \right)$$
B
$$\left( {{2 \over 3},\,{1 \over {\sqrt 3 }}} \right)$$
C
$$\left( {{2 \over 3},\,{{\sqrt 3 } \over 2}} \right)$$
D
$$\left( {1,\,{1 \over {\sqrt 3 }}} \right)$$
JEE Advanced Papers
EXAM MAP