1
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
The hybridisation of atomic orbitals of nitrogen in $$NO_2^+$$, $$NO_3^-$$ and $$NH_4^+$$ are
A
sp, sp3 and sp2 respectively
B
sp, sp2 and sp3 respectively
C
sp2, sp and sp3 respectively
D
sp2, sp3 and sp respectively
2
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
Let $$f\left( x \right) = \left\{ {\matrix{ {\left| x \right|,} & {for} & {0 < \left| x \right| \le 2} \cr {1,} & {for} & {x = 0} \cr } } \right.$$ then at $$x=0$$, $$f$$ has
A
a local maximum
B
no local maximum
C
a local minimum
D
no extremum
3
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
For all $$x \in \left( {0,1} \right)$$
A
$${e^x} < 1 + x$$
B
$${\log _e}\left( {1 + x} \right) < x$$
C
$$\sin x > x$$
D
$${\log _e}x > x$$
4
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
Let $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,} $$ where f is such that
$${1 \over 2} \le f\left( t \right) \le 1,$$ for $$t \in \left[ {0,1} \right]$$ and $$\,0 \le f\left( t \right) \le {1 \over 2},$$ for $$t \in \left[ {1,2} \right]$$.
Then $$g(2)$$ satisfies the inequality
A
$$ - {3 \over 2} \le g\left( 2 \right) < {1 \over 2}$$
B
$$0 \le g\left( 2 \right) < 2$$
C
$${3 \over 2} < g\left( 2 \right) \le {5 \over 2}$$
D
$$2 < g\left( 2 \right) < 4$$
JEE Advanced Papers
EXAM MAP