1
IIT-JEE 1997
Fill in the Blanks
+2
-0
For each natural number k, let $${C_k}$$ denote the circle with radius k centimetres and centre at the origin. On the circle $${C_k}$$, a-particle moves k centimetres in the counter-clockwise direction. After completing its motion on $${C_k}$$, the particle moves to $${C_{k + 1}}$$ in the radial direction. The motion of the patticle continues in the manner. The particle starts at (1, 0). If the particle crosses the positive direction of the x-axis for the first time on the circle $${C_n}$$ then n = ..............
2
IIT-JEE 1997
Subjective
+5
-0
Let $${z_1}$$ and $${z_2}$$ be roots of the equation $${z^2} + pz + q = 0\,$$ , where the coefficients p and q may be complex numbers. Let A and B represent $${z_1}$$ and $${z_2}$$ in the complex plane. If $$\angle AOB = \alpha \ne 0\,$$ and OA = OB, where O is the origin, prove that $${p^2} = 4q\,{\cos ^2}\left( {{\alpha \over 2}} \right)$$.
3
IIT-JEE 1997
Subjective
+5
-0
Prove that the values of the function $${{\sin x\cos 3x} \over {\sin 3x\cos x}}$$ do not lie between $${1 \over 3}$$ and 3 for any real $$x.$$
4
IIT-JEE 1997
Subjective
+5
-0
Prove that $$\sum\limits_{k = 1}^{n - 1} {\left( {n - k} \right)\,\cos \,{{2k\pi } \over n} = - {n \over 2},} $$ where $$n \ge 3$$ is an integer.
JEE Advanced Papers
EXAM MAP