1
IIT-JEE 1997
Subjective
+5
-0
Let $$a+b=4$$, where $$a<2,$$ and let $$g(x)$$ be a differentiable function.

If $${{dg} \over {dx}} > 0$$ for all $$x$$, prove that $$\int_0^a {g\left( x \right)dx + \int_0^b {g\left( x \right)dx} } $$
increases as $$(b-a)$$ increases.

2
IIT-JEE 1997
Fill in the Blanks
+2
-0
The value of $$\int_1^{{e^{37}}} {{{\pi \sin \left( {\pi In\,x} \right)} \over x}\,dx} $$ is ...............
3
IIT-JEE 1997
Fill in the Blanks
+2
-0
Let $${d \over {dx}}\,F\left( x \right) = {{{e^{\sin x}}} \over x},\,x > 0.$$ If $$\int_1^4 {{{2{e^{\sin {x^2}}}} \over x}} \,\,dx = F\left( k \right) - F\left( 1 \right)$$
then one of the possible values of $$k$$ is ............
4
IIT-JEE 1997
MCQ (Single Correct Answer)
+2
-0.5
If $$g\left( x \right) = \int_0^x {{{\cos }^4}t\,dt,} $$ then $$g\left( {x + \pi } \right)$$ equals
A
$$g\left( x \right) + g\left( \pi \right)$$
B
$$g\left( x \right) - g\left( \pi \right)$$
C
$$g\left( x \right) g\left( \pi \right)$$
D
$${{g\left( x \right)} \over {g\left( \pi \right)}}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12