1
IIT-JEE 1997
Subjective
+3
-0
How many grams of silver could be plated out on a serving tray by electrolysis of a solution containing silver in +1 oxidation state for a period of 8.0 hours at a current of 8.46 amperes? What is the area of the tray if the thickness of the silver plating is 0.00254 cm? Density of silver is 10.5 g/cm3
2
IIT-JEE 1997
Subjective
+2
-0
Calculate the equilibrium constant for the reaction
Fe2+ + Ce4+ $$\leftrightharpoons$$ Fe3+ + Ce3+
(given $$E_{C{e^{4 + }}/C{e^{3 + }}}^o$$ = 1.44 V; $$E_{F{e^{3 + }}/F{e^{2 + }}}^o$$ = 0.68 V)
Fe2+ + Ce4+ $$\leftrightharpoons$$ Fe3+ + Ce3+
(given $$E_{C{e^{4 + }}/C{e^{3 + }}}^o$$ = 1.44 V; $$E_{F{e^{3 + }}/F{e^{2 + }}}^o$$ = 0.68 V)
3
IIT-JEE 1997
Subjective
+5
-0
Let $$f(x)= Maximum $$ $$\,\left\{ {{x^2},{{\left( {1 - x} \right)}^2},2x\left( {1 - x} \right)} \right\},$$ where $$0 \le x \le 1.$$
Determine the area of the region bounded by the curves
$$y = f\left( x \right),$$ $$x$$-axes, $$x=0$$ and $$x=1.$$
Determine the area of the region bounded by the curves
$$y = f\left( x \right),$$ $$x$$-axes, $$x=0$$ and $$x=1.$$
4
IIT-JEE 1997
Subjective
+5
-0
Let $$u(x)$$ and $$v(x)$$ satisfy the differential equation $${{du} \over {dx}} + p\left( x \right)u = f\left( x \right)$$ and $${{dv} \over {dx}} + p\left( x \right)v = g\left( x \right),$$ where $$p(x) f(x)$$ and $$g(x)$$ are continuous functions. If $$u\left( {{x_1}} \right) > v\left( {{x_1}} \right)$$ for some $${{x_1}}$$ and $$f(x)>g(x)$$ for all $$x > {x_1},$$ prove that any point $$(x,y)$$ where $$x > {x_1},$$ does not satisfy the equations $$y=u(x)$$ and $$y=v(x)$$
Paper analysis
Total Questions
Chemistry
12
Mathematics
24
Physics
1
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978