1
IIT-JEE 1997
Fill in the Blanks
+2
-0
The sum of the rational terms in the expansion of $${\left( {\sqrt 2 + {3^{1/5}}} \right)^{10}}$$ is ...............
2
IIT-JEE 1997
Subjective
+5
-0
Let $$0 < {A_i} < n$$ for $$i = 1,\,2....,\,n.$$ Use mathematical induction to prove that $$$\sin {A_1} + \sin {A_2}....... + \sin {A_n} \le n\,\sin \,\,\left( {{{{A_1} + {A_2} + ...... + {A_n}} \over n}} \right)$$$

where $$ \ge 1$$ is a natural number. {You may use the fact that $$p\sin x + \left( {1 - p} \right)\sin y \le \sin \left[ {px + \left( {1 - p} \right)y} \right],$$ where $$0 \le p \le 1$$ and $$0 \le x,y \le \pi .$$}

3
IIT-JEE 1997
Fill in the Blanks
+2
-0
Let $$p$$ and $$q$$ be roots of the equation $${x^2} - 2x + A = 0$$ and let $$r$$ and $$s$$ be the roots of the equation $${x^2} - 18x + B = 0.$$ If $$p < q < r < s$$ are in arithmetic progression, then $$A = \,..........$$ and $$B = \,..........$$
4
IIT-JEE 1997
Fill in the Blanks
+2
-0
The real roots of the equation $$\,{\cos ^7}x + {\sin ^4}x = 1$$ in the interval $$\left( { - \pi ,\pi } \right)$$ are ...., ...., and ______.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12