1
IIT-JEE 1997
Subjective
+5
-0
Let $$0 < {A_i} < n$$ for $$i = 1,\,2....,\,n.$$ Use mathematical induction to prove that $$$\sin {A_1} + \sin {A_2}....... + \sin {A_n} \le n\,\sin \,\,\left( {{{{A_1} + {A_2} + ...... + {A_n}} \over n}} \right)$$$

where $$ \ge 1$$ is a natural number. {You may use the fact that $$p\sin x + \left( {1 - p} \right)\sin y \le \sin \left[ {px + \left( {1 - p} \right)y} \right],$$ where $$0 \le p \le 1$$ and $$0 \le x,y \le \pi .$$}

2
IIT-JEE 1997
Fill in the Blanks
+2
-0
Let $$p$$ and $$q$$ be roots of the equation $${x^2} - 2x + A = 0$$ and let $$r$$ and $$s$$ be the roots of the equation $${x^2} - 18x + B = 0.$$ If $$p < q < r < s$$ are in arithmetic progression, then $$A = \,..........$$ and $$B = \,..........$$
3
IIT-JEE 1997
Fill in the Blanks
+2
-0
The real roots of the equation $$\,{\cos ^7}x + {\sin ^4}x = 1$$ in the interval $$\left( { - \pi ,\pi } \right)$$ are ...., ...., and ______.
4
IIT-JEE 1997
Fill in the Blanks
+2
-0
The chords of contact of the pair of tangents drawn from each point on the line 2x + y = 4 to circle $${x^2} + {y^2} = 1$$ pass through the point........................
JEE Advanced Papers
EXAM MAP