1
IIT-JEE 1997
Subjective
+5
-0
Prove that $$\sum\limits_{k = 1}^{n - 1} {\left( {n - k} \right)\,\cos \,{{2k\pi } \over n} = - {n \over 2},} $$ where $$n \ge 3$$ is an integer.
2
IIT-JEE 1997
Subjective
+5
-0
Let $$S$$ be a square of unit area. Consider any quadrilateral which has one vertex on each side of $$S$$. If $$a,\,b,\,c$$ and $$d$$ denote the lengths of the sides of the quadrilateral, prove that $$2 \le {a^2} + {b^2} + {c^2} + {d^2} \le 4.$$
3
IIT-JEE 1997
Fill in the Blanks
+2
-0
The sum of all the real roots of the equation $${\left| {x - 2} \right|^2} + \left| {x - 2} \right| - 2 = 0$$ is ............................
4
IIT-JEE 1997
Fill in the Blanks
+2
-0
The sum of the rational terms in the expansion of $${\left( {\sqrt 2 + {3^{1/5}}} \right)^{10}}$$ is ...............
JEE Advanced Papers
EXAM MAP