1
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
In the following circuit, X is given by GATE ECE 2007 Digital Circuits - Combinational Circuits Question 31 English
A
$$X = \,A\overline B \,\overline C + \overline A \,B\,\overline C + \overline A \,\overline B C + ABC$$
B
$$X = \,\overline A \,BC + A\overline B C + AB\overline C + \overline A \,\overline B \,\overline C $$
C
$$X = AB + BC + AC$$
D
$$X = \,\overline A \,\overline B \, + \overline B \,\overline C \, + \overline A \,\overline C $$
2
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The Boolean expression Y= $$\overline A \,\overline B \,\overline C \,D + \overline A BC\overline D + A\overline {B\,} \overline C \,D + AB\overline C \,\overline D $$
A
Y = $$\overline A \,\overline B \,\overline C \,D + \overline A B\overline C + A\overline C D$$
B
Y = $$\overline A \,\overline B \,\overline C \,D + BC\overline D + A\overline B \overline C \,D$$
C
Y=$$ \overline A \,BC\,\overline D + \overline B \,\overline C D + A\overline B \overline C \,D$$
D
Y= $$\overline A \,BC\,\overline D + \overline B \,\overline C D + AB\overline C \,\overline D $$
3
GATE ECE 2007
MCQ (Single Correct Answer)
+1
-0.3
The Boolean function Y=AB+CD is to be realized using only 2-input NAND gates. The minimum number of gates required is
A
2
B
3
C
4
D
5
4
GATE ECE 2007
MCQ (Single Correct Answer)
+1
-0.3
A plane wave of wavelength $$\lambda $$ is traveling in a direction making an angle $${{{30}^ \circ }}$$ with positive $$x$$-axis and $${{{90}^ \circ }}$$ with positiv $$y$$-axis. The $$\overrightarrow E $$ field of the plane wave can be represented as ($${E_0}$$ is a constant)
A
$$\vec E = \widehat y\,\,{E_0}{\mkern 1mu} {e^{j\left( {\omega t - {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }x - {\pi \over \lambda }z} \right)}}$$
B
$$\vec E = \widehat y\,\,{E_0}{\mkern 1mu} {e^{j\left( {\omega t - {\pi \over \lambda }x - {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }z} \right)}}$$
C
$$\vec E = \widehat y\,\,{E_0}{\mkern 1mu} {e^{j\left( {\omega t + {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }x + {\pi \over \lambda }z} \right)}}$$
D
$$\vec E = \widehat y\,\,{\mkern 1mu} {E_0}{\mkern 1mu} {e^{j\left( {\omega t - {\pi \over \lambda }x + {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }z} \right)}}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12