1
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The Boolean expression Y= $$\overline A \,\overline B \,\overline C \,D + \overline A BC\overline D + A\overline {B\,} \overline C \,D + AB\overline C \,\overline D $$
A
Y = $$\overline A \,\overline B \,\overline C \,D + \overline A B\overline C + A\overline C D$$
B
Y = $$\overline A \,\overline B \,\overline C \,D + BC\overline D + A\overline B \overline C \,D$$
C
Y=$$ \overline A \,BC\,\overline D + \overline B \,\overline C D + A\overline B \overline C \,D$$
D
Y= $$\overline A \,BC\,\overline D + \overline B \,\overline C D + AB\overline C \,\overline D $$
2
GATE ECE 2007
MCQ (Single Correct Answer)
+1
-0.3
The Boolean function Y=AB+CD is to be realized using only 2-input NAND gates. The minimum number of gates required is
A
2
B
3
C
4
D
5
3
GATE ECE 2007
MCQ (Single Correct Answer)
+1
-0.3
A plane wave of wavelength $$\lambda $$ is traveling in a direction making an angle $${{{30}^ \circ }}$$ with positive $$x$$-axis and $${{{90}^ \circ }}$$ with positiv $$y$$-axis. The $$\overrightarrow E $$ field of the plane wave can be represented as ($${E_0}$$ is a constant)
A
$$\vec E = \widehat y\,\,{E_0}{\mkern 1mu} {e^{j\left( {\omega t - {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }x - {\pi \over \lambda }z} \right)}}$$
B
$$\vec E = \widehat y\,\,{E_0}{\mkern 1mu} {e^{j\left( {\omega t - {\pi \over \lambda }x - {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }z} \right)}}$$
C
$$\vec E = \widehat y\,\,{E_0}{\mkern 1mu} {e^{j\left( {\omega t + {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }x + {\pi \over \lambda }z} \right)}}$$
D
$$\vec E = \widehat y\,\,{\mkern 1mu} {E_0}{\mkern 1mu} {e^{j\left( {\omega t - {\pi \over \lambda }x + {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }z} \right)}}$$
4
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
A load of 50 $$\Omega $$ is connected in shunt in a 2-wire transmission line of $$Z_0$$ = 50 $$\Omega $$ as shown in the Fig. The 2-port scattering parameter matrix (S-matrix) of the shunt element is GATE ECE 2007 Electromagnetics - Transmission Lines Question 18 English
A
$$\left[ {\matrix{ { - {1 \over 2}} & {{1 \over 2}} \cr {{1 \over 2}} & { - {1 \over 2}} \cr } } \right]$$
B
$$\left[ {\matrix{ 0 & 1 \cr 1 & 0 \cr } } \right]$$
C
$$\left[ {\matrix{ { - {1 \over 3}} & {{2 \over 3}} \cr {{2 \over 3}} & { - {1 \over 3}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{1 \over 4}} & { - {3 \over 4}} \cr { - {3 \over 4}} & { - {1 \over 4}} \cr } } \right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12