1
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider a linear system whose state space Representation is $$\mathop x\limits^ \bullet \left( t \right) = AX\left( t \right).$$
If the initial state vector of the system is $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 2} \cr } } \right],$$
then the system response is $$x\left( t \right) = \left[ {\matrix{ {{e^{ - 2t}}} \cr { - 2{e^{ - 2t}}} \cr } } \right].$$
If the initial state vector of the system changes to $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],$$
then the system response becomes $$x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right].$$

The eigen value and eigen vector pairs $$\left( {{\lambda _{i,}}{V_i}} \right)$$ for the system are

A
$$\left[ { - 1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
B
$$\left[ { - 2,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 1,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
C
$$\left[ { - 1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ {2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
D
$$\left[ {1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
2
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
A unity feedback control system has an open-loop transfer function $$$G\left(s\right)=\frac K{s\left(s^2+7s+12\right)}$$$ The gain K for which s = −1 + j1 will lie on the root locus of this system is:
A
4
B
5.5
C
6.5
D
10
3
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The frequency response of a linear, time-invariant system is given by $$H\left(f\right)\;=\;\frac5{1\;+\;j10\mathrm{πf}}$$ .The step response of the system is:
A
$$5\left(1\;-\;e^{-5t}\right)u\left(t\right)$$
B
$$5\left(1\;-\;e^{-\frac15}\right)u\left(t\right)$$
C
$$\frac15\;\left(1\;-\;e^{-5t}\right)u\left(t\right)$$
D
$$\frac15\;\left(1\;-\;e^{-\frac15}\right)u\left(t\right)$$
4
GATE ECE 2007
MCQ (Single Correct Answer)
+1
-0.3
If the Laplace transform of a signal y(t) is $$Y\left(s\right)\;=\;\frac1{s\left(s\;-\;1\right)}$$ , then its final value is:
A
-1
B
$$0$$
C
1
D
unbounded
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12