1
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a plant is $$$T\left(s\right)=\frac5{\left(s+5\right)\left(s^2+s+1\right)}$$$ The second-order approximation of T (s) using dominant pole concept is:
A
$$\frac1{\left(s+5\right)\left(s+1\right)}$$
B
$$\frac5{\left(s+5\right)\left(s+1\right)}$$
C
$$\frac5{\left(s^2+s+1\right)}$$
D
$$\frac1{\left(s^2+s+1\right)}$$
2
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider a linear system whose state space Representation is $$\mathop x\limits^ \bullet \left( t \right) = AX\left( t \right).$$
If the initial state vector of the system is $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 2} \cr } } \right],$$
then the system response is $$x\left( t \right) = \left[ {\matrix{ {{e^{ - 2t}}} \cr { - 2{e^{ - 2t}}} \cr } } \right].$$
If the initial state vector of the system changes to $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],$$
then the system response becomes $$x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right].$$

The eigen value and eigen vector pairs $$\left( {{\lambda _{i,}}{V_i}} \right)$$ for the system are

A
$$\left[ { - 1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
B
$$\left[ { - 2,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 1,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
C
$$\left[ { - 1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ {2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
D
$$\left[ {1,\left[ {\matrix{ 1 \cr { - 1} \cr } } \right]} \right]and\left[ { - 2,\left[ {\matrix{ 1 \cr { - 2} \cr } } \right]} \right]$$
3
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
A unity feedback control system has an open-loop transfer function $$$G\left(s\right)=\frac K{s\left(s^2+7s+12\right)}$$$ The gain K for which s = −1 + j1 will lie on the root locus of this system is:
A
4
B
5.5
C
6.5
D
10
4
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The frequency response of a linear, time-invariant system is given by $$H\left(f\right)\;=\;\frac5{1\;+\;j10\mathrm{πf}}$$ .The step response of the system is:
A
$$5\left(1\;-\;e^{-5t}\right)u\left(t\right)$$
B
$$5\left(1\;-\;e^{-\frac15}\right)u\left(t\right)$$
C
$$\frac15\;\left(1\;-\;e^{-5t}\right)u\left(t\right)$$
D
$$\frac15\;\left(1\;-\;e^{-\frac15}\right)u\left(t\right)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12