1
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The frequency response of a linear, time-invariant system is given by $$H\left(f\right)\;=\;\frac5{1\;+\;j10\mathrm{πf}}$$ .The step response of the system is:
A
$$5\left(1\;-\;e^{-5t}\right)u\left(t\right)$$
B
$$5\left(1\;-\;e^{-\frac15}\right)u\left(t\right)$$
C
$$\frac15\;\left(1\;-\;e^{-5t}\right)u\left(t\right)$$
D
$$\frac15\;\left(1\;-\;e^{-\frac15}\right)u\left(t\right)$$
2
GATE ECE 2007
MCQ (Single Correct Answer)
+1
-0.3
If the Laplace transform of a signal y(t) is $$Y\left(s\right)\;=\;\frac1{s\left(s\;-\;1\right)}$$ , then its final value is:
A
-1
B
$$0$$
C
1
D
unbounded
3
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The state space representation of a separately excited DC servo motor dynamics is given as $$$\left[ {\matrix{ {{{d\omega } \over {dt}}} \cr {{{d{i_a}} \over {dt}}} \cr } } \right] = \left[ {\matrix{ { - 1} & 1 \cr { - 1} & { - 10} \cr } } \right]\left[ {\matrix{ \omega \cr {{i_a}} \cr } } \right] + \left[ {\matrix{ 0 \cr {10} \cr } } \right]u.$$$

Where 'ω' is the speed of the motor, 'ia' is the armature current and u is the armature voltage. The transfer function $${{\omega \left( s \right)} \over {U\left( s \right)}}$$ of the motor is

A
$${{10} \over {{s^2} + 11s + 11}}$$
B
$${1 \over {{s^2} + 11s + 11}}$$
C
$${{10s + 10} \over {{s^2} + 11s + 11}}$$
D
$${1 \over {{s^2} + s + 11}}$$
4
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider a linear system whose state space Representation is $$\mathop x\limits^ \bullet \left( t \right) = AX\left( t \right).$$
If the initial state vector of the system is $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 2} \cr } } \right],$$
then the system response is $$x\left( t \right) = \left[ {\matrix{ {{e^{ - 2t}}} \cr { - 2{e^{ - 2t}}} \cr } } \right].$$
If the initial state vector of the system changes to $$x\left( 0 \right) = \left[ {\matrix{ 1 \cr { - 1} \cr } } \right],$$
then the system response becomes $$x\left( t \right) = \left[ {\matrix{ {{e^{ - t}}} \cr { - {e^{ - t}}} \cr } } \right].$$

The system matrix a is

A
$$\left[ {\matrix{ 0 & 1 \cr { - 1} & 1 \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 1 \cr { - 1} & { - 2} \cr } } \right]$$
C
$$\left[ {\matrix{ 2 & 1 \cr { - 1} & { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ 0 & 1 \cr { - 2} & { - 3} \cr } } \right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12